【題目】已知直線 l1∥l2,l3 和 l1,l2 分別交于 C,D 兩點,點 A,B 分別在線 l1,l2 上,且位于 l3 的左 側(cè),點 P 在直線 l3 上,且不和點 C,D 重合.
(1)如圖 1,有一動點 P 在線段 CD 之間運動時,試確定∠1、∠2、∠3 之間的關(guān)系,并給出證明;
(2)如圖 2,當(dāng)動點 P 在線段 CD 之外運動時,上述的結(jié)論是否成立?若不成立,并給出證明.
【答案】(1)∠2=∠1+∠3;(2)不成立,應(yīng)為∠3=∠1+∠2,證明見解析.
【解析】試題分析:(1)過點P作PE∥l1,根據(jù)l1∥l2可知PE∥l2,故可得出∠1=∠APE,∠3=∠BPE.再由∠2=∠APE+∠BPE即可得出結(jié)論;
(2)設(shè)PB與l1交于點F,根據(jù)l1∥l2可知∠3=∠PFC.在△APF中,根據(jù)∠PFC是△APF的一個外角即可得出結(jié)論.
試題解析:解:(1)∠2=∠1+∠3.證明如下:
如圖①,過點P作PE∥l1.∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.
又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;
(2)上述結(jié)論不成立,新的結(jié)論:∠3=∠1+∠2.證明如下:
如圖②,設(shè)PB與l1交于點F.∵l1∥l2,∴∠3=∠PFC.
在△APF中,∵∠PFC是△APF的一個外角,∴∠PFC=∠1+∠2,即∠3=∠1+∠2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去年11月份我市某一天的最高氣溫是15℃,最低氣溫是﹣1℃,那么這一天的最高氣溫比最低氣溫高( 。
A. 16℃ B. ﹣15℃ C. 14℃ D. 13℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口的直徑 EF 長為10cm,母線OE(OF)長為10cm,在母線OF 上的點A 處有一塊爆米花殘渣且FA=2cm,一只螞蟻從杯口的點E 處沿圓錐表面爬行到A 點,則此螞蟻爬行的最短距離為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(5,0),點B的坐標(biāo)為(3,2),直線經(jīng)過原點和點B,直線經(jīng)過點A和點B.
(1)求直線, 的函數(shù)關(guān)系式;
(2)根據(jù)函數(shù)圖像回答:不等式的解集為 ;
(3)若點是軸上的一動點,經(jīng)過點P作直線∥軸,交直線于點C,交直線于點D,分別經(jīng)過點C,D向軸作垂線,垂足分別為點E, F,得長方形CDFE.
①若設(shè)點P的橫坐標(biāo)為m,則點C的坐標(biāo)為(m, ),點D的坐標(biāo)為(m, );(用含字母m的式子表示)
②若長方形CDFE的周長為26,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某種車的耗油量,我們對這種車在高速公路上做了耗油試驗,并把試驗的數(shù)據(jù)記錄下來, 制成如表:
汽車行駛時間 t(小時) | 0 | 1 | 2 | 3 | … |
油箱剩余油量 Q(升) | 100 | 94 | 88 | 82 | … |
(1)上表反映的兩個變量中,自變量是 ,因變量是 ;
(2)根據(jù)上表可知,該車油箱的大小為 升,每小時耗油 升;
(3)請求出兩個變量之間的關(guān)系式(用 t 來表示 Q).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=2.若點M,N分別在OA,OB上,且△PMN為等邊三角形,則滿足上述條件的△PMN有( 。
A. 2個 B. 3個 C. 4個 D. 無數(shù)個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品原價為a元,因銷量下滑,經(jīng)營者連續(xù)兩次降價,每次降價10%,后因供不應(yīng)求,又一次提高20%,問現(xiàn)在這種商品的價格是( )
A.1.08a元B.0.88a元C.0.972a元D.0.968 a元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“富春包子”是揚州特色早點,富春茶社為了了解顧客對各種早點的喜愛情況,設(shè)計了如右圖的調(diào)查問卷,對顧客進行了抽樣調(diào)查.根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖.
根據(jù)以上信息,解決下列問題:
(1)條形統(tǒng)計圖中“湯包”的人數(shù)是 ,扇形統(tǒng)計圖中“蟹黃包”部分的圓心角為 °;
(2)根據(jù)抽樣調(diào)查結(jié)果,請你估計富春茶社1000名顧客中喜歡“湯包”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:①對頂角相等;②相等的角是對頂角;③若兩個角不相等,則這兩個角一定不是對頂角;④若兩個角不是對頂角,則這兩個角不相等.不正確的有( )
A.①②B.②③C.②④D.④③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com