【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=2.若點(diǎn)M,N分別在OA,OB上,且△PMN為等邊三角形,則滿足上述條件的△PMN有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 無數(shù)個(gè)

【答案】D

【解析】如圖在OA、OB上截取OE=OF=OP,作∠MPN=60°,

∵OP平分∠AOB,∴∠EOP=∠POF=60°,

∵OP=OE=OF,∴△OPE,△OPF是等邊三角形,

∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,

在△PEM和△PON中,∠PEM=∠PON,PE=PO,∠EPM=∠OPN,

∴△PEM△PON,∴PM=PN,∴△PMN是等邊三角形,

滿足條件的△PMN有無數(shù)個(gè),

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個(gè)月用電量不超過A千瓦時(shí),那么這戶居民這個(gè)月只交10元電費(fèi),如果超過A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過部分還要按每千瓦時(shí)元收費(fèi).

1)若某戶2月份用電90千瓦時(shí),超過規(guī)定A千瓦時(shí),則超過部分電費(fèi)為多少元?(A表示)

2)下表是這戶居民3月、4月的用電情況和交費(fèi)情況

月份

用電量(千瓦時(shí))

交電費(fèi)總金額(元)

3

80

25

4

45

10

根據(jù)上表數(shù)據(jù),求電廠規(guī)定的A值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上一點(diǎn),且AB=14.動點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動,設(shè)運(yùn)動時(shí)間為tt>0秒.

1寫出數(shù)軸上點(diǎn)B表示的數(shù) ,點(diǎn)P表示的數(shù) 用含t的代數(shù)式表示;

2動點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動,若點(diǎn)P、Q同時(shí)出發(fā),問點(diǎn)P運(yùn)動多少秒時(shí)追上點(diǎn)Q?

3若M為AP的中點(diǎn),N為PB的中點(diǎn).點(diǎn)P在運(yùn)動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a+b=7a-b=3,則a2-b2的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線 l1l2,l3 l1l2 分別交于 C,D 兩點(diǎn),點(diǎn) AB 分別在線 l1,l2 上,且位于 l3 的左 側(cè),點(diǎn) P 在直線 l3 上,且不和點(diǎn) C,D 重合.

1)如圖 1,有一動點(diǎn) P 在線段 CD 之間運(yùn)動時(shí),試確定∠1、2、3 之間的關(guān)系,并給出證明;

2)如圖 2,當(dāng)動點(diǎn) P 在線段 CD 之外運(yùn)動時(shí),上述的結(jié)論是否成立?若不成立,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠1+∠2+∠3180°,α=∠1+∠2,β=∠2+∠3,γ=∠1+∠3,則α、β、γ中銳角最多有_____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ADE60°,DF平分∠ADE,∠130°,求證:DF∥BE

證明:∵DF平分∠ADE(已知)

__________ADE

∵∠ADE60°(已知)

∴_________________30°( )

∵∠130°(已知)

∴____________________( )

∴____________________( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形OABC的三個(gè)頂點(diǎn)A、BC在以O為圓心的半圓上,過點(diǎn)CCDAB,分別交AB、AO的延長線于點(diǎn)DE,AE交半圓O于點(diǎn)F,連接CF

1)判斷直線DE與半圓O的位置關(guān)系,并說明理由;

2)①求證:CF=OC;

②若半圓O的半徑為12,求陰影部分的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線

(1)寫出拋物線的開口方向、對稱軸;

(2)函數(shù)y有最大值還是最小值?并求出這個(gè)最大(小)值;

(3)設(shè)拋物線與y軸的交點(diǎn)為P,與x軸的交點(diǎn)為Q,求直線PQ的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊答案