如圖1所示,在直角梯形ABCD中AB∥CD,∠B=90°.動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿梯形的邊由BCDA運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,把y看作x的函數(shù),函數(shù)圖象如圖2所示,則△ABC的面積為


  1. A.
    10
  2. B.
    16
  3. C.
    18
  4. D.
    32
B
分析:解本題需注意一定的面積值相對(duì)應(yīng)的距離可以有2個(gè).找到對(duì)應(yīng)的點(diǎn),找出準(zhǔn)確反映y與x之間對(duì)應(yīng)關(guān)系的圖象,需分析在不同階段中y隨x變化的情況.
解答:由圖2知:當(dāng)x=4和x=9時(shí),△ABP的面積相等,
∴BC=4,BC+CD=9,
即CD=5,又知AD=5,
∴在直角梯形ABCD中AD=5,
如圖,作DE⊥AB,∵∠B=90°

∴DE=BC=4,在直角△AED中:AE===3,
∴AB=AE+EB=3+5=8,
∴S△ABC=AB×BC=×8×4=16.
故選B
點(diǎn)評(píng):解決本題的關(guān)鍵是讀懂圖意,得到相應(yīng)的直角梯形中各邊之間的關(guān)系.此題考查了學(xué)生從圖象中讀取信息的數(shù)形結(jié)合能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75°,以CD為一邊的等邊△DCE的另一頂點(diǎn)E在腰AB上.
(1)求∠AED的度數(shù);
(2)求證:AB=BC;
(3)如圖2所示,若F為線(xiàn)段CD上一點(diǎn),∠FBC=30°,求
DFFC
的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,在直角梯形ABCD中,AB∥DC,∠B=90°.動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿梯形的邊由B→C→D→A運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y.把y看作x的函數(shù),函數(shù)的圖象如圖2所示,試求當(dāng)0≤x≤9時(shí)y與x的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1所示,在直角梯形ABCD中,AD∥BC,∠DCB=75°,AB⊥BC,以CD為一邊的等邊△DCE的另一頂點(diǎn)E在腰AB上.
(1)求∠AED的度數(shù);
(2)求證:AB=BC;
(3)如圖2所示,若F為線(xiàn)段CD上一點(diǎn),∠FBC=30°,△BFC的面積=4cm2,求AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆浙江省湖州市環(huán)渚學(xué)校九年級(jí)第二次月考數(shù)學(xué)試卷(帶解析) 題型:單選題

如圖甲所示,在直角梯形ABCD中,AB∥DC,.動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿梯形的邊由B→C→D→A運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y.把y看作x的函數(shù),函數(shù)的圖像如圖乙所示,則△ABC的面積為

A.10B.16C.18 D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆廣東省江門(mén)市福泉奧林匹克學(xué)校九年級(jí)3月份質(zhì)量檢測(cè)數(shù)學(xué)試卷(帶解析) 題型:單選題

如圖甲所示,在直角梯形ABCD中,AB∥DC,.動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿梯形的邊由B→C→D→A運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y.把y看作x的函數(shù),函數(shù)的圖像如圖乙所示,則△ABC的面積為(     )

A.10B.16 C.18 D.32

查看答案和解析>>

同步練習(xí)冊(cè)答案