年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
4 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(黑龍江哈爾濱卷)數(shù)學(xué)(帶解析) 題型:解答題
如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(3,0),以O(shè)A為邊作等邊三角形OAB,點(diǎn)B在第一象限,過點(diǎn)B作AB的垂線交x軸于點(diǎn)C.動點(diǎn)P從O點(diǎn)出發(fā)沿OC向C點(diǎn)運(yùn)動,動點(diǎn)Q從B點(diǎn)出發(fā)沿BA向A點(diǎn)運(yùn)動,P,Q兩點(diǎn)同時出發(fā),速度均為1個單位/秒。設(shè)運(yùn)動時間為t秒.
(1)求線段BC的長;
(2)連接PQ交線段OB于點(diǎn)E,過點(diǎn)E作x軸的平行線交線段BC于點(diǎn)F。設(shè)線段EF的長為m,求m與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍:
(3)在(2)的條件下,將△BEF繞點(diǎn)B逆時針旋轉(zhuǎn)得到△BE′F′,使點(diǎn)E的對應(yīng)點(diǎn)E′落在線段AB上,點(diǎn)F的對應(yīng)點(diǎn)是F′,E′F′交x軸于點(diǎn)G,連接PF、QG,當(dāng)t為何值時,?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(黑龍江哈爾濱卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(3,0),以O(shè)A為邊作等邊三角形OAB,點(diǎn)B在第一象限,過點(diǎn)B作AB的垂線交x軸于點(diǎn)C.動點(diǎn)P從O點(diǎn)出發(fā)沿OC向C點(diǎn)運(yùn)動,動點(diǎn)Q從B點(diǎn)出發(fā)沿BA向A點(diǎn)運(yùn)動,P,Q兩點(diǎn)同時出發(fā),速度均為1個單位/秒。設(shè)運(yùn)動時間為t秒.
(1)求線段BC的長;
(2)連接PQ交線段OB于點(diǎn)E,過點(diǎn)E作x軸的平行線交線段BC于點(diǎn)F。設(shè)線段EF的長為m,求m與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍:
(3)在(2)的條件下,將△BEF繞點(diǎn)B逆時針旋轉(zhuǎn)得到△BE′F′,使點(diǎn)E的對應(yīng)點(diǎn)E′落在線段AB上,點(diǎn)F的對應(yīng)點(diǎn)是F′,E′F′交x軸于點(diǎn)G,連接PF、QG,當(dāng)t為何值時,?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,點(diǎn)0為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(3,0),以0A為邊作等邊三角形OAB,點(diǎn)B在第一象限,過點(diǎn)B作AB的垂線交x軸于點(diǎn)C.動點(diǎn)P從0點(diǎn)出發(fā)沿0C向C點(diǎn)運(yùn)動,動點(diǎn)Q從B點(diǎn)出發(fā)沿BA向A點(diǎn)運(yùn)動,P,Q兩點(diǎn)同時出發(fā),速度均為1個單位/秒。設(shè)運(yùn)動時間為t秒.
(1)求線段BC的長;
(2)連接PQ交線段OB于點(diǎn)E,過點(diǎn)E作x軸的平行線交線段BC于點(diǎn)F。設(shè)線段EF的長為m,求m與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍:
(3)在(2)的條件下,將△BEF繞點(diǎn)B逆時針旋轉(zhuǎn)得到△BE1F1,使點(diǎn)E的對應(yīng)點(diǎn)E1落在線段AB上,點(diǎn)F的對應(yīng)點(diǎn)是F1,E1F1交x軸于點(diǎn)G,連接PF、QG,當(dāng)t為何值時,2BQ-PF= QG?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com