(2010•成都)設(shè)x1,x2是一元二次方程x2-3x-2=0的兩個(gè)實(shí)數(shù)根,則x12+3x1x2+x22的值為    
【答案】分析:根據(jù)根與系數(shù)的關(guān)系,可求出x1+x2以及x1x2的值,然后根據(jù)x12+3x1x2+x22=(x1+x22+x1x2進(jìn)一步代值求解.
解答:解:由題意,得:x1+x2=3,x1x2=-2;
原式=(x1+x22+x1x2=9-2=7.
點(diǎn)評(píng):熟記一元二次方程根與系數(shù)的關(guān)系是解答此類題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2010•成都)在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-3,0),若將經(jīng)過A、C兩點(diǎn)的直線y=kx+b沿y軸向下平移3個(gè)單位后恰好經(jīng)過原點(diǎn),且拋物線的對(duì)稱軸是直線x=-2.
(1)求直線AC及拋物線的函數(shù)表達(dá)式;
(2)如果P是線段AC上一點(diǎn),設(shè)△ABP、△BPC的面積分別為S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求點(diǎn)P的坐標(biāo);
(3)設(shè)⊙Q的半徑為1,圓心Q在拋物線上運(yùn)動(dòng),則在運(yùn)動(dòng)過程中是否存在⊙Q與坐標(biāo)軸相切的情況?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說明理由.并探究:若設(shè)⊙Q的半徑為r,圓心Q在拋物線上運(yùn)動(dòng),則當(dāng)r取何值時(shí),⊙Q與兩坐軸同時(shí)相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省成都市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•成都)在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-3,0),若將經(jīng)過A、C兩點(diǎn)的直線y=kx+b沿y軸向下平移3個(gè)單位后恰好經(jīng)過原點(diǎn),且拋物線的對(duì)稱軸是直線x=-2.
(1)求直線AC及拋物線的函數(shù)表達(dá)式;
(2)如果P是線段AC上一點(diǎn),設(shè)△ABP、△BPC的面積分別為S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求點(diǎn)P的坐標(biāo);
(3)設(shè)⊙Q的半徑為1,圓心Q在拋物線上運(yùn)動(dòng),則在運(yùn)動(dòng)過程中是否存在⊙Q與坐標(biāo)軸相切的情況?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說明理由.并探究:若設(shè)⊙Q的半徑為r,圓心Q在拋物線上運(yùn)動(dòng),則當(dāng)r取何值時(shí),⊙Q與兩坐軸同時(shí)相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一元二次方程》(03)(解析版) 題型:填空題

(2010•成都)設(shè)x1,x2是一元二次方程x2-3x-2=0的兩個(gè)實(shí)數(shù)根,則x12+3x1x2+x22的值為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省成都市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•成都)甲計(jì)劃用若干天完成某項(xiàng)工作,在甲獨(dú)立工作兩天后,乙加入此項(xiàng)工作,且甲、乙兩人工效相同,結(jié)果提前兩天完成任務(wù).設(shè)甲計(jì)劃完成此項(xiàng)工作的天數(shù)是x,則x的值是   

查看答案和解析>>

同步練習(xí)冊(cè)答案