【題目】如圖1,在中,,點(diǎn)邊上一點(diǎn),連接BD,點(diǎn)上一點(diǎn),連接,,過點(diǎn),垂足為,交于點(diǎn)

(1)求證:;

(2)如圖2,若,點(diǎn)的中點(diǎn),求證:;

(3)(2)的條件下,如圖3,若,求線段的長.

【答案】(1)詳見解析;(2)詳見解析;(3)6

【解析】

1)根據(jù)直角三角形的性質(zhì)可得,,然后根據(jù)三角形的內(nèi)角和和已知條件即可推出結(jié)論;

2)根據(jù)直角三角形的性質(zhì)和已知條件可得,進(jìn)而可得,然后即可根據(jù)AAS證明,可得,進(jìn)一步即可證得結(jié)論;

3)連接,過點(diǎn)延長線于點(diǎn),連接,如圖4.先根據(jù)已知條件、三角形的內(nèi)角和定理和三角形的外角性質(zhì)推出,進(jìn)而可得,然后即可根據(jù)SAS證明ABEACH,進(jìn)一步即可推出,過點(diǎn)K,易證AKDCHD,可得,然后即可根據(jù)等腰三角形的性質(zhì)推得DF=2EF,問題即得解決.

1)證明:如圖1,,

,,

,

,;

2)證明:如圖2,,

,,

∵點(diǎn)的中點(diǎn),∴AD=CD,

AAS),,

,;

3)解:連接,過點(diǎn)延長線于點(diǎn),連接,如圖4

,,

設(shè),則,

,

,,,

,∴ABEACHSAS),

,,

過點(diǎn)K,

,

AKDCHDAAS),,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費(fèi)190元;購買3個籃球的費(fèi)用與購買5個排球的費(fèi)用相同。

(1)籃球和排球的單價各是多少元?

(2)若購買籃球不少于8個,所需費(fèi)用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】受氣候的影響,某超市蔬菜供應(yīng)緊張,需每天從外地調(diào)運(yùn)蔬菜1000斤.超市決定從甲、乙兩大型蔬菜棚調(diào)運(yùn)蔬菜,已知甲蔬菜棚每天最多可調(diào)出800斤,乙蔬菜棚每天最多可調(diào)運(yùn)600斤,從兩蔬菜棚調(diào)運(yùn)蔬菜到超市的路程和運(yùn)費(fèi)如下表:

到超市的路程(千米)

運(yùn)費(fèi)(元/斤·千米)

甲蔬菜棚

120

0.03

乙蔬菜棚

80

0.05

1)若某天調(diào)運(yùn)蔬菜的總運(yùn)費(fèi)為3840元,則從甲、乙兩蔬菜棚各調(diào)運(yùn)了多少斤蔬菜?

2)設(shè)從甲蔬菜棚調(diào)運(yùn)蔬菜斤,總運(yùn)費(fèi)為元,試寫出的函數(shù)關(guān)系式,怎樣安排調(diào)運(yùn)方案才能使每天的總運(yùn)費(fèi)最省?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACBCED都是等腰直角三角形,∠BCA=DCE=90°,且點(diǎn)D在線段AB上,連接AE

1)求證:①BCD≌△ACE;②∠DAE=90°;

2)若AB=8,當(dāng)點(diǎn)D在線段AB上什么位置時,四邊形ADCE的周長最。空堈f明并求出周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高科技產(chǎn)品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:

員工

管理人員

普通工作人員

人員結(jié)構(gòu)

總經(jīng)理

部門經(jīng)理

科研人員

銷售人員

高級技工

中級技工

勤雜工

員工數(shù)(名)

1

3

2

3

24

1

每人月工資(元)

21000

8400

2025

2200

1800

1600

950

請你根據(jù)上述內(nèi)容,解答下列問題:

1)該公司高級技工   名;

2)所有員工月工資的平均數(shù)x2500元,中位數(shù)為   元,眾數(shù)為   元;

3)小張到這家公司應(yīng)聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個數(shù)據(jù)向小張介紹員工的月工資實(shí)際水平更合理些;

4)去掉四個管理人員的工資后,請你計算出其他員工的月平均工資(結(jié)果保留整數(shù)),并判斷能否反映該公司員工的月工資實(shí)際水平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明手上一張扇形紙片OAB.現(xiàn)要求在紙片上截一個正方形,使它的面積盡可能大.

小明的方案是:如圖,在扇形紙片OAB內(nèi),畫正方形CDEF,使CDOA上,FOB上;連接OE并延長交弧ABI,畫IH∥EDOAH,IJ∥OAOBJ,再畫JG∥FCOAG

1)你認(rèn)為小明畫出的四邊形GHIJ是正方形嗎?如果是,請證明.如果不是,請說明理由.

2)如果扇形OAB的圓心角∠AOB=30°,OA=6cm,小明截得的四邊形GHIJ面積是多少(結(jié)果精確到0.1cm).

3)(1)中小明畫出的四邊形GHIJ如果是正方形,我們把它叫做扇形的內(nèi)接正方形(四個頂點(diǎn)分別在扇形的半徑和弧上).請你再畫出一種不同于圖(1)的扇形的內(nèi)接正方形(保留畫圖痕跡,不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰繞底角頂點(diǎn)A逆時針旋轉(zhuǎn)15°后得到,如果,那么兩個三角形的重疊部分面積為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,DE在同一直線上,連接BE.填空:

AEB的度數(shù)為______;

線段AD,BE之間的數(shù)量關(guān)系為______

(2)拓展探究

如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE90°,點(diǎn)A,DE在同一直線上,CM為△DCEDE邊上的高,連接BE,請判斷∠AEB的度數(shù)及線段CM,AEBE之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,它是一個8×10的網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點(diǎn)叫格點(diǎn),△ABC的頂點(diǎn)均在格點(diǎn)上.

1)畫出△ABC關(guān)于直線OM對稱的△A1B1C1

2)畫出△ABC關(guān)于點(diǎn)O的中心對稱圖形△A2B2C2

3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形嗎?如果是,請畫出對稱軸.△A1B1C1與△A2B2C2組成的圖形   (填“是”或“不是”)軸對稱圖形.

查看答案和解析>>

同步練習(xí)冊答案