【題目】如圖,在△ABC中,∠ABC的平分線BE與∠ACB外角的平分線CE交于點E.
(1)如圖1,若∠BAC=40°,則∠BEC= °
(2)如圖2,將∠BAC變?yōu)?/span>60°,則∠BEC= °,寫出∠BAC與∠BEC的關(guān)系;并說明你的理由
(3)在圖1的基礎(chǔ)上過點E分別作EN⊥BA于N,EQ⊥AC于Q,EM⊥BD于M,如圖3,
求證:△ANE≌AQE,并求出∠NAE的度數(shù).
【答案】(1)20°;(2)30°, ∠E=∠A,理由見解析;(3)見解析,∠NAE=70°.
【解析】
(1)證明∠E=∠A,即可解決問題;
(2)利用(1)中結(jié)論解決問題即可;
(3)連接AE.證明Rt△ANE≌Rt△AQE(HL)即可解決問題;
(1)依據(jù)三角形外角性質(zhì)∠A=∠ACD∠ABC,∠E=∠ECD∠EBD
∵∠ABC的平分線與∠ACB外角的平分線交于點E,
∴∠EBD=∠ABC,∠ECD=∠ACD
∴∠E=∠ECD∠EBD=∠ACD∠ABC=∠A=20°.
(2)30°,∠E=∠A
理由:∠A=∠ACD﹣∠ABC,∠E=∠ECD﹣∠EBD
∵∠ABC的平分線與∠ACB外角的平分線交于點E,
∴∠EBD=∠ABC,∠ECD=∠ACD
∴∠E=∠ECD﹣∠EBD=∠ACD﹣∠ABC=∠A
(3)連接AE.
∵CE平分∠ACD,EQ⊥AC,EM⊥BD,
∴EQ=EM,
同理EN=EM
∴EN=EQ,
在Rt△ANE和Rt△AQE中,
,
∴Rt△ANE≌Rt△AQE(HL),
∴∠EAQ=∠EAN,
∵∠BAC=40°,
∴∠NAQ=140°,
∴∠NAE=×140°=70°
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是正方形ABCD的對角線BD上一點(點P不與點B、D重合),PE⊥BC于點E,PF⊥CD于點F,連接EF給出下列五個結(jié)論:①AP=EF;②AP⊥EF;③僅有當∠DAP=45°或67.5°時,△APD是等腰三角形;④∠PFE=∠BAP:⑤PD=EC.其中有正確有( )個.
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從-2,-1,1,2這四個數(shù)中,任取兩個不同的數(shù)作為一次函數(shù)y=kx+b的系數(shù)k,b,則一次函數(shù)y=kx+b的圖象不經(jīng)過第四象限的概率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當四邊形ADFC是菱形時,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形的頂點為坐標原點,頂點在軸正半軸上,頂點、在第一象限,,,點在邊上,將四邊形沿直線翻折,使點和點分別落在這個坐標平面內(nèi)的和處,且,某正比例函數(shù)圖象經(jīng)過,則這個正比例函數(shù)的解析式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)產(chǎn)品店利用網(wǎng)絡(luò)將優(yōu)質(zhì)土特產(chǎn)銷往全國,其中銷售的核桃和花生這兩種商品的相關(guān)信息如下表:
商品 | 核桃 | 花生 |
規(guī)格 | 1 kg/袋 | 2 kg/袋 |
利潤 | 10元/袋 | 8元/袋 |
根據(jù)上表提供的信息,解答下列問題:
(1)已知今年上半年,該店銷售上表規(guī)格的核桃和花生共3000kg,獲得利潤21000元,求上半年該店銷售這種規(guī)格的核桃和花生各多少袋;
(2)根據(jù)之前的銷售情況,估計今年下半年,該店還能銷售上表規(guī)格的核桃和花生共2000kg,其中,核桃的銷售量不低于600kg.假設(shè)今年下半年,銷售上表規(guī)格的核桃為(kg),銷售上表規(guī)格的核桃和花生獲得的總利潤為(元),寫出與之間的函數(shù)關(guān)系式,并求下半年該店銷售這種規(guī)格的核桃和花生至少獲得的總利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖1:已知直線與軸,軸分別交于,兩點,以為直角頂點在第一象限內(nèi)做等腰Rt△.
(1)求,兩點的坐標;
(2)求所在直線的函數(shù)關(guān)系式;
(3)如圖2,直線交軸于點,在直線上取一點,使,與軸相交于點.
①求證:;
②在軸上是否存在一點,使△的面積等于△的面積?若存在,直接寫出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△A1B1C1,△A2B2C2的周長相等,現(xiàn)有兩個判斷:
①若A1B1=A2B2,A1C1=A2C2,則△A1B1C1≌△A2B2C2;
②若∠A1=∠A2,∠B1=∠B2,則△A1B1C1≌△A2B2C2,
對于上述的兩個判斷,下列說法正確的是( 。
A. ①正確,②錯誤 B. ①錯誤,②正確 C. ①,②都錯誤 D. ①,②都正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com