【題目】如圖①,P為△ABC內一點,連接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一個三角形與△ABC相似,那么就稱P為△ABC的自相似點.
(1)如圖②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中線,過點B作BE丄CD,垂足為E.試說明E是△ABC的自相似點;
(2)在△ABC中,∠A<∠B<∠C. ①如圖③,利用尺規(guī)作出△ABC的自相似點P(寫出作法并保留作圖痕跡);
②若△ABC的內心P是該三角形的自相似點,求該三角形三個內角的度數(shù).
【答案】
(1)解:在Rt△ABC中,∠ACB=90°,CD是AB上的中線,
∴CD= AB,
∴CD=BD,
∴∠BCE=∠ABC,
∵BE⊥CD,∴∠BEC=90°,
∴∠BEC=∠ACB,
∴△BCE∽△ABC,
∴E是△ABC的自相似點
(2)解:①如圖所示,
作法:①在∠ABC內,作∠CBD=∠A,
②在∠ACB內,作∠BCE=∠ABC,BD交CE于點P,
則P為△ABC的自相似點;
②∵P是△ABC的內心,∴∠PBC= ∠ABC,∠PCB= ∠ACB,
∵△ABC的內心P是該三角形的自相似點,
∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,
∴∠A+2∠A+4∠A=180°,
∴∠A= ,
∴該三角形三個內角度數(shù)為: , , .
【解析】(1)根據(jù)已知條件得出∠BEC=∠ACB,以及∠BCE=∠ABC,得出△BCE∽△ABC,即可得出結論;(2)①根據(jù)作一角等于已知角即可得出△ABC的自相似點;②根據(jù)∠PBC=∠A,∠BCP=∠ABC=∠2∠PBC=2∠A,∠ACB=2∠BCP=4∠A,即可得出各內角的度數(shù).
【考點精析】本題主要考查了直角三角形斜邊上的中線和三角形的內切圓與內心的相關知識點,需要掌握直角三角形斜邊上的中線等于斜邊的一半;三角形的內切圓的圓心是三角形的三條內角平分線的交點,它叫做三角形的內心才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標中,已知點O(0,0),A(0,2),B(1,0),點P是反比例函數(shù)y=﹣ 圖象上的一個動點,過點P作PQ⊥x軸,垂足為Q.若以點O、P、Q為頂點的三角形與△OAB相似,則相應的點P共有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算下列各式.
(1)(﹣2)3﹣|2﹣5|﹣(﹣15)
(2)﹣4﹣(+)+(﹣5)﹣(﹣)
(3)(﹣+﹣+)÷(﹣)
(4)18+32÷(﹣2)3﹣(﹣4)2×5
(5)﹣32﹣[(1)3×(﹣)﹣6÷|﹣|]
(6)2×(﹣1)﹣2×13+(﹣1)×5+×(﹣13)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】光明中學十分重視中學生的用眼衛(wèi)生,并定期進行視力檢測.某次檢測設有A、B兩處檢測點,甲、乙、丙三名學生各自隨機選擇其中的一處檢測視力.
(1)求甲、乙、丙三名學生在同一處檢測視力的概率;
(2)求甲、乙、丙三名學生中至少有兩人在B處檢測視力的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.
(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE,求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校初三(1)班 名學生需要參加體育“五選一”自選項目測試,班上學生所報自選項目的情況統(tǒng)計表如下:
自選項目 | 人數(shù) | 頻率 |
立定跳遠 | 9 | 0.18 |
三級蛙跳 | 12 | |
一分鐘跳繩 | 8 | 0.16 |
投擲實心球 | 0.32 | |
推鉛球 | 5 | 0.1 |
合計 | 50 | 1 |
(1)求 的值;
(2)若將各自選項目的人數(shù)所占比例繪制成扇形統(tǒng)計圖,求“一分鐘跳繩”對應扇形的圓心角的度數(shù);
(3)在選報“推鉛球”的學生中,有3名男生,2名女生.為了了解學生的訓練效果,從這5名學生中隨機抽取兩名學生進行推鉛球測試,求所抽取的兩名學生中至多有一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李師傅加工1個甲種零件和1個乙種零件的時間分別是固定的,現(xiàn)知道李師傅加工3個甲種零件和5個乙種零件共需55分鐘;加工4個甲種零件和9個乙種零件共需85分鐘,則李師傅加工2個甲種零件和4個乙種零件共需分鐘.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三點,D(1,m)是一個動點,當△ACD的周長最小時,△ABD的面積為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com