【題目】閱讀材料:
在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0,y0)到直線Ax+By+C=0的距離公式為:.
例如:求點(diǎn)P0(0,0)到直線4x+3y﹣3=0的距離.
解:由直線4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴點(diǎn)P0(0,0)到直線4x+3y﹣3=0的距離為=.
根據(jù)以上材料,解決下列問題:
問題1:點(diǎn)P1(3,4)到直線的距離為 ;
問題2:已知:⊙C是以點(diǎn)C(2,1)為圓心,1為半徑的圓,⊙C與直線相切,求實(shí)數(shù)b的值;
問題3:如圖,設(shè)點(diǎn)P為問題2中⊙C上的任意一點(diǎn),點(diǎn)A,B為直線3x+4y+5=0上的兩點(diǎn),且AB=2,請(qǐng)求出S△ABP的最大值和最小值.
【答案】(1)4;(2)b=或;(3)S△ABP的最大值=4,S△ABP的最小值=2.
【解析】
試題(1)根據(jù)點(diǎn)到直線的距離公式就是即可;
(2)根據(jù)點(diǎn)到直線的距離公式,列出方程即可解決問題.
(3)求出圓心C到直線3x+4y+5=0的距離,求出⊙C上點(diǎn)P到直線3x+4y+5=0的距離的最大值以及最小值即可解決問題.
試題解析:解:(1)點(diǎn)P1(3,4)到直線3x+4y﹣5=0的距離d==4,故答案為:4.
(2)∵⊙C與直線相切,⊙C的半徑為1,∴C(2,1)到直線3x+4y﹣4b=0的距離d=1,∴ =1,解得b=或.
(3)點(diǎn)C(2,1)到直線3x+4y+5=0的距離d==3,∴⊙C上點(diǎn)P到直線3x+4y+5=0的距離的最大值為4,最小值為2,∴S△ABP的最大值=×2×4=4,S△ABP的最小值=×2×2=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2-4n+4經(jīng)過點(diǎn)P(2,4),與x軸交于A、B兩點(diǎn),過點(diǎn)P作直線l∥x軸,點(diǎn)C為第二象限內(nèi)直線l上方,拋物線上一個(gè)動(dòng)點(diǎn),其橫坐標(biāo)為m。
(1)如圖(1),若AB=6, 求拋物線解析式
(2)如圖(2),在(1)的條件下,設(shè)點(diǎn)C的橫坐標(biāo)為t,ACP的面積S,求S與t之間的函數(shù)關(guān)系式.
(3)如圖(3),連接OP,過點(diǎn)C作EC∥OP交拋物線于點(diǎn)E,直線PE、CP分別交x軸于點(diǎn)G、H,當(dāng)PG=PH時(shí),求a的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了豐富學(xué)生課余生活,決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A籃球;B乒乓球;C羽毛球;D足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問題:
(1)這次被調(diào)查的學(xué)生共有__________人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖(1)補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(4,2).將點(diǎn)A繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)90°后,再向左平移1個(gè)單位長(zhǎng)度得到點(diǎn)A′,則過點(diǎn)A′的正比例函數(shù)的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑為AB,點(diǎn)C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年中國(guó)北京世界園藝博覽會(huì)(以下簡(jiǎn)稱“世園會(huì)”)于4月29日至10月7日在北京延慶區(qū)舉行.世園會(huì)為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:.“解密世園會(huì)”、.“愛我家,愛園藝”、.“園藝小清新之旅”和.“快速車覽之旅”.李欣和張帆都計(jì)劃暑假去世園會(huì),他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.
(1)李欣選擇線路.“園藝小清新之旅”的概率是多少?
(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一面靠墻(墻的最大可用長(zhǎng)度為8 m)的空地上用長(zhǎng)為24 m的籬笆圍成中間隔有二道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬AB為x m,面積為S m2.
(1)求S關(guān)于x的函數(shù)關(guān)系式及自變量的取值范圍;
(2)求所圍成花圃的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)二次函數(shù)圖像上部分點(diǎn)的橫坐標(biāo),縱坐標(biāo)的對(duì)應(yīng)值如下表:
… | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … | |
… | 0 | 2 | 0 | -6 | … |
(1)的值為______;
(2)在給定的直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖像;
(3)當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系xOy,ΔABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)(4,4),請(qǐng)解答下列問題:
(1)畫出ΔABC關(guān)于y軸對(duì)稱的ΔA1B1C1,并寫出點(diǎn)A1,B1,C1的坐標(biāo);
(2)將ΔABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的ΔA2B2C,并寫出點(diǎn)A2,B2的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com