精英家教網 > 初中數學 > 題目詳情
已知如圖,正方形AEDG的兩個頂點A、D都在⊙O上,AB為⊙O直徑,射線ED與⊙O的另一個交點為C,試判斷線段AC與線段BC的關系.
線段AC與線段BC垂直且相等,
證明:連接AD,
∵四邊形AEDG為正方形,
∴∠ADE=45°,
∵四邊形ABCD內接⊙O,
∴∠B+∠ADC=180°,
又∵∠ADE+∠ADC=180°,
∴∠B=∠ADE=45°,
又∵AB為⊙O直徑,
∴∠ACB=90°,即AC⊥BC,
∴∠BAC=45°,
∴AC=BC.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,⊙O的直徑AB=4,C為圓周上一點,AC=2,過點C作⊙O的切線DC,P點為優(yōu)弧CBA上一點(不與A、C重合)
(1)求∠APC與∠ACD的度數;
(2)當點P移動到弧CB的中點時,四邊形OBPC是什么特殊的四邊形,說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

在平面直角坐標系中,以點(2,3)為圓心,2為半徑的圓必定( 。
A.與x軸相離,與y軸相切B.與x軸,y軸都相離
C.與x軸相切,與y軸相離D.與x軸,y軸都相切

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC中,以AB為直徑的⊙O交AC于點D,直徑AB左側的半圓上有一點E,連結EB、ED,∠CBD=∠E.
(1)求證:BC是⊙O的切線;
(2)若∠E=30°,BC=
4
3
3
,求陰影部分的面積.(計算結果精確到0.1)(參考數值:π≈3.14,
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,PA、PB分別切⊙O于A、B,∠APB=50°,則∠AOP=______度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,⊙O的割線PAB交⊙O于點A,B,PA=14cm,AB=10cm,PO=20cm,則⊙O的半徑是( 。
A.8cmB.10cmC.12cmD.14cm

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖:PA、PB切⊙O于A、B,過點C的切線交PA、PB于D、E,PA=8cm,則△PDE的周長為______cm.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖:AB是⊙O的直徑,AD是弦,∠DAB=22.5°,延長AB到點C,使得∠ACD=45°.
(1)求證:CD是⊙O的切線;
(2)若AB=2
2
,求BC的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知直線MN經過⊙O上的點A,點B在MN上,連OB交⊙O于C點,且點C是OB的中點,AC=
1
2
OB,若點P是⊙O上的一個動點,當AB=2
3
時,求△APC的面積的最大值.

查看答案和解析>>

同步練習冊答案