【題目】如圖,A、B兩個(gè)小集鎮(zhèn)在河流CD的同側(cè),分別到河的距離為AC=10千米,BD=30千米,且CD=30千米,現(xiàn)在要在河邊建一自來水廠,向A、B兩鎮(zhèn)供水,鋪設(shè)水管的費(fèi)用為每千米3萬,請(qǐng)你在河流CD上選擇水廠的位置M,使鋪設(shè)水管的費(fèi)用最節(jié)省,并求出總費(fèi)用是多少?
【答案】150萬元.
【解析】
試題分析:此題的關(guān)鍵是確定點(diǎn)M的位置,需要首先作點(diǎn)A的對(duì)稱點(diǎn)A′,連接點(diǎn)B和點(diǎn)A′,交l于點(diǎn)M,M即所求作的點(diǎn).根據(jù)軸對(duì)稱的性質(zhì),知:MA+MB=A′B.根據(jù)勾股定理即可求解.
解:作A關(guān)于CD的對(duì)稱點(diǎn)A′,連接A′B與CD,交點(diǎn)CD于M,點(diǎn)M即為所求作的點(diǎn),
則可得:DK=A′C=AC=10千米,
∴BK=BD+DK=40千米,
∴AM+BM=A′B==50千米,
總費(fèi)用為50×3=150萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一些長(zhǎng)30厘米,寬10厘米的長(zhǎng)方形紙,按圖所示方法粘合起來,粘合部分的寬為2厘米.
(1)求5張白紙粘合后的總長(zhǎng)度為多少厘米?
(2)設(shè)x張白紙粘合后的總長(zhǎng)度為y厘米,請(qǐng)寫出y與x之間的關(guān)系式?
(3)求當(dāng)x=20時(shí),試求y的值為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB的垂直平分線DE交AC于D,垂足為E,若∠A=30°,CD=3.
(1)求∠BDC的度數(shù).
(2)求AC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點(diǎn),修建一個(gè)土特產(chǎn)加工基地,且使C、D兩村到E點(diǎn)的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應(yīng)建在離A站多少千米的地方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OB的方向是南偏東60°,OA、OC分別平分∠NOB和∠NOE,
(1)請(qǐng)直接寫出OA的方向是 ,OC的方向是 .
(2)求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖甲,AB∥CD,試問∠2與∠1+∠3的關(guān)系是什么,為什么?
(2)如圖乙,AB∥CD,試問∠2+∠4與∠1+∠3+∠5一樣大嗎?為什么?
(3)如圖丙,AB∥CD,試問∠2+∠4+∠6與∠1+∠3+∠5+∠7哪個(gè)大?為什么?
你能將它們推廣到一般情況嗎?請(qǐng)寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點(diǎn)E,連接CE,作BF⊥CE,垂足為F,則tan∠FBC的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c滿足:①與2x2+ay3的和是單項(xiàng)式; ②,
(1)求a、b、c的值;
(2)求代數(shù)式(5b2﹣3c2)﹣3(b2﹣c2)﹣(﹣c2)+2016abc的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OB是∠AOC的角平分線,OD是∠COE的角平分線,
(1)若∠BOE=110°,∠AOB=30°,求∠COE的度數(shù);
(2)若∠AOE=140°,∠AOC=60°,求∠DOE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com