解:(1)BE=CF,AE=AF,CE=DF.寫出兩組即可.
(2)(1)中的結(jié)論仍然成立,如圖②,BE=CF的結(jié)論仍然成立;
證明:∵在菱形ABCD中,∠BAD=120°,
∴∠BAC=∠ABC=∠ACD=∠CAD=60°,
∴AB=AC,
又由題意可知,∠EAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF,
∴BE=CF.
(3)當0°<α<60°時,三角板與這個菱形重合部分的面積就是四邊形AECF的面積.
解:由題意可證△BAE≌△CAF,
∴四邊形AECF的面積就是△ABC的面積,
∵AB=4,
∴S
△ABC=
×4×2
=
,
即重疊部分的面積是
.
分析:(1)由圖可得,BE=CF,CE=FD,AE=AF;
(2)任。1)中一組,通過證明三角形全等,即可證明;
(3)重合部分的面積即是△ABC的面積,又△ABC為等邊三角形,AB=4,易得高為2
,即可求得.
點評:本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)及菱形的性質(zhì),證明線段相等,一般是通過證明三角形全等來解答.