【題目】如圖,拋物線y=x2+bx-2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(一1,0).
⑴求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
⑵判斷△ABC的形狀,證明你的結(jié)論;
⑶點(diǎn)M(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)CM+DM的值最小時(shí),求m的值.
【答案】(1)拋物線的解析式為y=x2-x-2
頂點(diǎn)D的坐標(biāo)為 (, -).
(2)△ABC是直角三角形,理由見(jiàn)解析;
(3).
【解析】
(1)把點(diǎn)A坐標(biāo)代入拋物線即可得解析式,從而求得頂點(diǎn)坐標(biāo);
(2)分別計(jì)算出三條邊的長(zhǎng)度,符合勾股定理可知其是直角三角形;
(3)作出點(diǎn)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)C′,則C′(0,2),OC′=2,連接C′D交x軸于點(diǎn)M,根據(jù)軸對(duì)稱(chēng)性及兩點(diǎn)之間線段最短可知,MC + MD的值最小.
解:(1)∵點(diǎn)A(-1,0)在拋物線y=x2 +bx-2上
∴× (-1 )2 +b× (-1) –2 = 0
解得b =
∴拋物線的解析式為y=x2-x-2.
y=x2-x-2 =(x2 -3x- 4 ) =(x-)2-,
∴頂點(diǎn)D的坐標(biāo)為 (, -).
(2)當(dāng)x = 0時(shí)y = -2,
∴C(0,-2),OC = 2.
當(dāng)y = 0時(shí),x2-x-2 = 0, ∴x1 = -1, x2 = 4
∴B (4,0)
∴OA =1, OB = 4, AB = 5.
∵AB2 = 25, AC2 =OA2 +OC2 = 5, BC2 =OC2 +OB2 = 20,
∴AC2 +BC2 =AB2.
∴△ABC是直角三角形.
(3)作出點(diǎn)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)C′,則C′(0,2),OC′=2,連接C′D交x軸于點(diǎn)M,根據(jù)軸對(duì)稱(chēng)性及兩點(diǎn)之間線段最短可知,MC +MD的值最。
解法一:設(shè)拋物線的對(duì)稱(chēng)軸交x軸于點(diǎn)E.
∵ED∥y軸, ∴∠OC′M=∠EDM,∠C′OM=∠DEM
∴△C′OM∽△DEM.
∴
∴,∴m=.
解法二:設(shè)直線C′D的解析式為y =kx +n ,
則,解得n = 2,.
∴.
∴當(dāng)y = 0時(shí),,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點(diǎn)C,BD平分∠ABF,且交AE于點(diǎn)D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)(4,0),其部分圖象如圖所示,下列結(jié)論:①拋物線過(guò)原點(diǎn);②a﹣b+c<0;③4a+b+c=0;④拋物線的頂點(diǎn)坐標(biāo)為(2,b);⑤當(dāng)x<1時(shí),y隨x增大而增大.其中結(jié)論正確的是( 。
A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,點(diǎn)、分別在邊、上,根據(jù)下列給定的條件,不能判斷與平行的是( )
A. AD=6,BD=4,AE=2.4,CE=1.6
B. BD=2,AB=6,CE=1,AC=3;
C. AD=4,AB=6,DE=2,BC=3;
D. AD=4,AB=6,AE=2,AC=3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:和均為等腰直角三角形,,,,連接.
(1)如圖1所示,線段與的數(shù)量關(guān)系是_____,位置關(guān)系是_____;
(2)在圖1中,若點(diǎn)M、P、N分別為的中點(diǎn),連接,請(qǐng)判斷的形狀,并說(shuō)明理由;
(3)如圖2所示,若M、N、P分別為上的點(diǎn),且滿(mǎn)足,,連接,則線段長(zhǎng)度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會(huì)積極參與疫情防控.甲、乙兩個(gè)工廠生產(chǎn)同一種防護(hù)口罩,甲廠每天比乙廠多生產(chǎn)口罩5萬(wàn)只,甲廠生產(chǎn)該種口罩40萬(wàn)只所用時(shí)間與乙廠生產(chǎn)該種口罩15萬(wàn)只所用時(shí)間相同,甲、乙兩個(gè)工廠每天分別生產(chǎn)該種口罩多少萬(wàn)只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近些年來(lái),“校園安全”受到全社會(huì)的廣泛關(guān)注,為了了解學(xué)生對(duì)于安全知識(shí)的了解程度,學(xué)校采用隨機(jī)抽樣的調(diào)查方式,根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有________人.
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若從對(duì)校園安全知識(shí)達(dá)到了“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與直線y=﹣x﹣2相交于A(﹣2,0),B(m,﹣6)兩點(diǎn),且拋物線經(jīng)過(guò)點(diǎn)C (5,0).點(diǎn)P是直線下方的拋物線上異于A、B的動(dòng)點(diǎn).過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,交直線于點(diǎn)E.
(1)求拋物線的解析式;
(2)連結(jié)PA、PB、BD,當(dāng)S△ADBS△PAB時(shí),求S△PAB;
(3)是否存在點(diǎn)P,使得△PBE為直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.已知:在矩形中,是對(duì)角線,于點(diǎn),于點(diǎn);
(1)如圖1,求證:;
(2)如圖2,當(dāng)時(shí),連接.,在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出圖2中四個(gè)三角形,使寫(xiě)出的每個(gè)三角形的面積都等于矩形面積的.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com