【題目】如圖,在等邊三角形ABC中,點(diǎn)PBC邊上一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),連接AP,作射線PD,使∠APD=60°,PDAC于點(diǎn)D,已知AB=a,設(shè)CD=y,BP=x,則yx函數(shù)關(guān)系的大致圖象是( 。

A. B. C. D.

【答案】C

【解析】

根據(jù)等邊三角形的性質(zhì)可得出∠B=∠C=60°,由等角的補(bǔ)角相等可得出∠BAP=∠CPD,進(jìn)而即可證出△ABP∽△PCD,根據(jù)相似三角形的性質(zhì)即可得出y=- x2+x,對照四個(gè)選項(xiàng)即可得出.

∵△ABC為等邊三角形,
∴∠B=∠C=60°,BC=AB=a,PC=a-x.
∵∠APD=60°,∠B=60°,
∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
∴∠BAP=∠CPD,
∴△ABP∽△PCD,

,,

y=- x2+x.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館客房部有60個(gè)房間供游客居住,當(dāng)每個(gè)房間的定價(jià)為每天200元時(shí),房間可以住滿.當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.對有游客入住的房間,賓館需對每個(gè)房間每天支出20元的各種費(fèi)用.

設(shè)每個(gè)房間每天的定價(jià)增加x元.求:

1)房間每天的入住量y(間)關(guān)于x(元)的函數(shù)關(guān)系式;

2)該賓館每天的房間收費(fèi)z(元)關(guān)于x(元)的函數(shù)關(guān)系式;

3)該賓館客房部每天的利潤w(元)關(guān)于x(元)的函數(shù)關(guān)系式;當(dāng)每個(gè)房間的定價(jià)為每天多少元時(shí),w有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品—圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”.

1)觀察“規(guī)形圖”,試探究、之間的關(guān)系,并說明理由;

2)請你直接利用以上結(jié)論,解決以下三個(gè)問題:

①如圖2,把一塊三角尺放置在上,使三角尺的兩條直角邊、恰好經(jīng)過點(diǎn)、,則________________;

②如圖3平分,平分,若,求的度數(shù);

③如圖4,,等分線相交于點(diǎn),,,若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理揭示了直角三角形三邊之間的關(guān)系,其中蘊(yùn)含著豐富的科學(xué)知識和人文價(jià)值.如圖所示,是一棵由正方形和含角的直角三角形按一定規(guī)律長成的勾股樹,樹的主干自下而上第一個(gè)正方形和第一個(gè)直角三角形的面積之和為,第二個(gè)正方形和第二個(gè)直角三角形的面積之和為,…,第個(gè)正方形和第個(gè)直角三角形的面積之和為

設(shè)第一個(gè)正方形的邊長為1

請解答下列問題:

1______

2)通過探究,用含的代數(shù)式表示,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是ABC的內(nèi)心,AE的延長線與ABC的外接圓相交于點(diǎn)D.

(1)BAC=70°,求CBD的度數(shù);

(2)求證:DE=DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.

(1)求證:四邊形ABEF是平行四邊形;

(2)當(dāng)∠ABC為多少度時(shí),四邊形ABEF為矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點(diǎn)AACx軸交拋物線于點(diǎn)C,AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),設(shè)其橫坐標(biāo)為m.

(1)求拋物線的解析式;

(2)若動(dòng)點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時(shí),四邊形AOPE面積最大,并求出其最大值;

(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)計(jì)劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊(duì)每天比乙工程隊(duì)每天多修路0.5千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍

(1)求甲、乙兩個(gè)工程隊(duì)每天各修路多少千米?

(2)若甲工程隊(duì)每天的修路費(fèi)用為0.5萬元,乙工程隊(duì)每天的修路費(fèi)用為0.4萬元,要使兩個(gè)工程隊(duì)修路總費(fèi)用不超過5.2萬元,甲工程隊(duì)至少修路多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線表示三條相互交叉的公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有(

A.一處B.二處C.三處D.四處

查看答案和解析>>

同步練習(xí)冊答案