【題目】如圖,在△ABC和△BAD中,AC與BD相交于點E,已知AD=BC,另外只能從下面給出的三個條件:①∠DAB=∠CBA;②∠D=∠C;③∠DBA=∠CAB中選擇其中的一個用來證明△ABC和△BAD全等,這個條件是 (填序號),并證明△ABC≌△BAD.
【答案】①,證明見解析.
【解析】試題分析:分別針對所給的三個條件進(jìn)行討論,確定只有添加條件①,根據(jù)SAS即可證明△ABC≌△BAD.
試題解析:①添加條件∠DAB=∠CBA,還有已知條件AD=BC,AB是公共邊,符合全等三角形的判定定理SAS,能推出△ABD≌△BAC,故①可以;
②添加條件∠D=∠C,還有已知條件AD=BC,AB是公共邊,不符合全等三角形的判定定理,不能推出△ABD≌△BAC,故②不可以;
③添加條件∠DBA=∠CAB,還有已知條件AD=BC,AB是公共邊,不符合全等三角形的判定定理,不能推出△ABD≌△BAC,故③不可以;
這個條件是①,證明如下:
在△ABD和△CBA中, ,
∴△ABD≌△CBA(SAS).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子品牌商下設(shè)臺式電腦部、平板電腦部、手機部等.2018年的前五個月該品牌全部商品銷售額共計600萬元.下表表示該品牌商2018年前五個月的月銷售額(統(tǒng)計信息不全).圖1表示該品牌手機部各月銷售額占該品牌所有商品當(dāng)月銷售額的百分比情況統(tǒng)計圖.
品牌月銷售額統(tǒng)計表(單位:萬元)
月份 | 1月 | 2月 | 3月 | 4月 | 5月 |
品牌月銷售額 | 180 | 90 | 115 | 95 |
()該品牌5月份的銷售額是 萬元;
()手機部5月份的銷售額是 萬元;
小明同學(xué)觀察圖1后認(rèn)為,手機部5月份的銷售額比手機部4月份的銷售額減少了,你同意他的看法嗎?請說明理由;
()該品牌手機部有A、B、C、D、E五個機型,圖2表示在5月份手機部各機型銷售額占5月份手機部銷售額的百分比情況統(tǒng)計圖.則5月份 機型的銷售額最高,銷售額最高的機型占5月份該品牌銷售額的百分比是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑AB交弦CD于點G,CG=DG,⊙O的切線BE交DO的延長線于點E,F(xiàn)是DE與⊙O的交點,連接BD,BF.
(1)求證:∠CDE=∠E;
(2)若OD=4,EF=1,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點D在線段BC上,如果∠BAC=90°,則∠BCE= 度;
(2)設(shè)∠BAC=α,∠BCE=β.
①如圖2,當(dāng)點D在線段BC上移動,則α,β之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點D在直線BC上移動,則α,β之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綜合與實踐”學(xué)習(xí)活動準(zhǔn)備制作一組三角形,記這些三角形的三邊分別為a,b,c,并且這些三角形三邊的長度為大于1且小于5的整數(shù)個單位長度.
(1)用記號(a,b,c)(a≤b≤c)表示一個滿足條件的三角形,如(2,3,3)表示邊長分別為2,3,3個單位長度的一個三角形.請列舉出所有滿足條件的三角形.
(2)用直尺和圓規(guī)作出三邊滿足a<b<c的三角形(用給定的單位長度,不寫作法,保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的高中部在A校區(qū),初中部在B校區(qū),學(xué)校學(xué)生會計劃在3月12日植樹節(jié)當(dāng)天安排部分學(xué)生到郊區(qū)公園參加植樹活動.已知A校區(qū)的每位高中學(xué)生往返車費是6元,B校區(qū)的每位初中學(xué)生往返的車費是10元,要求初、高中均有學(xué)生參加,且參加活動的初中學(xué)生比參加活動的高中學(xué)生多4人,本次活動的往返車費總和不超過210元,求初、高中最多各有多少學(xué)生參加.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知AB∥CD,點E、F分別是AB、CD上的點,點P是兩平行線之間的一點,設(shè)∠AEP=α,∠PFC=β,在圖①中,過點E作射線EH交CD于點N,作射線FI,延長PF到G,使得PE、FG分別平分∠AEH、∠DFl,得到圖②.
(1)在圖①中,過點P作PM∥AB,當(dāng)α=20°,β=50°時,∠EPM= 度,∠EPF= 度;
(2)在(1)的條件下,求圖②中∠END與∠CFI的度數(shù);
(3)在圖②中,當(dāng)FI∥EH時,請直接寫出α與β的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OD平分∠BOC,OE平分∠AOC,∠BOC=60°,∠AOC=58°.
(1)求出∠AOB及其補角的度數(shù);
(2)①請求出∠DOC和∠AOE的度數(shù);
②判斷∠DOE與∠AOB是否互補,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB,點P是∠AOB內(nèi)部的一個定點,點E、F分別是OA、OB上的動點.
(1)要使得△PEF的周長最小,試在圖上確定點E、F的位置.
(2)若OP=4,要使得△PEF的周長的最小值為4,則∠AOB=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com