【題目】某學(xué)校為了豐富學(xué)生課余生活,開展了“第二課堂”活動,推出了以下四種選修課程:、繪畫;、唱歌;、演講;、書法.學(xué)校規(guī)定:每個學(xué)生都必須報名且只能選擇其中的一個課程.學(xué)校隨機抽查了部分學(xué)生,對他們選擇的課程情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合統(tǒng)計圖中的信息解決下列問題:
(1)這次抽查的學(xué)生人數(shù)是多少人?
(2)將條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,求選課程的人數(shù)所對的圓心角的度數(shù);
(4)如果該校共有1200名學(xué)生,請你估計該校報課程的學(xué)生約有多少人?
【答案】(1)這次抽查的學(xué)生人數(shù)是40人;(2)圖見解析;(3)36°;(4)該校報課程的學(xué)生約有420人
【解析】
(1)根據(jù)選擇課程A的人數(shù)和所占抽查學(xué)生總?cè)藬?shù)的百分率即可求出這次抽查的學(xué)生人數(shù);
(2)用抽查學(xué)生總?cè)藬?shù)減去選課程A、選課程B、選課程D的人數(shù),即可求出選課程C的人數(shù),然后補全條形統(tǒng)計圖即可;
(3)求出選課程D的人數(shù)占抽查學(xué)生總?cè)藬?shù)的分率,再乘360°即可;
(4)求出選課程B的人數(shù)占抽查學(xué)生總?cè)藬?shù)的分率,再乘該??cè)藬?shù)即可.
解:(1)這次抽查的學(xué)生人數(shù)為:12÷30%=40人
答:這次抽查的學(xué)生人數(shù)是40人.
(2)選課程C的人數(shù)為:40-12-14-4=10人
補全條形統(tǒng)計圖,如下
(3)選課程的人數(shù)所對的圓心角的度數(shù)為
答:選課程的人數(shù)所對的圓心角的度數(shù)36°.
(4)該校報課程的學(xué)生約有人
答:該校報課程的學(xué)生約有420人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,厘米,厘米,如果點以厘米的速度運動.
(1)如果點在線段上由點向點運動.點在線段上由點向點運動,它們同時出發(fā),若點的運動速度與點的運動速度相等:
①經(jīng)過“秒后,和是否全等?請說明理由.
②當兩點的運動時間為多少秒時,剛好是一個直角三角形?
(2)若點的運動速度與點的運動速度不相等,點從點出發(fā),點以原來的運動速度從點同時出發(fā),都順時針沿三邊運動,經(jīng)過秒時點與點第一次相遇,則點的運動速度是__________厘米秒.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,對角線AC,BD交于點O,AB⊥AC,AB=1,BC=.
(1)求平行四邊形ABCD的面積S□ABCD;
(2)求對角線BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,, 是的角平分線.
(1)如圖 1,求證:;
(2)如圖 2,作的角平分線交線段于點,若,求的面積;
(3)如圖 3,過點作于點,點是線段上一點(不與 重合),以為一邊,在 的下方作,交延長線于點,試探究線段,與之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的長為 ;
(2)D是OA上一點,以BD為直徑作⊙M,⊙M交AB于點Q.當⊙M與y軸相切時,sin∠BOQ= ;
(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運動.當點P到達點A時,兩點同時停止運動.過點P作直線PE∥OC,與折線O﹣B﹣A交于點E.設(shè)點P運動的時間為t(秒).求當以B、D、E為頂點的三角形是直角三角形時點E的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=x+2與坐標軸交于A、B兩點,點A在x軸上,點B在y軸上,C點的坐標為(1,0),拋物線y=ax2+bx+c經(jīng)過點A、B、C.
(1)求該拋物線的解析式;
(2)根據(jù)圖象直接寫出不等式ax2+(b﹣1)x+c>2的解集;
(3)點P是拋物線上一動點,且在直線AB上方,過點P作AB的垂線段,垂足為Q點.當PQ=時,求P點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一枚運載火箭從距雷達站C處5km的地面O處發(fā)射,當火箭到達點A,B時,在雷達站C測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.
(1)求A,B兩點間的距離(結(jié)果精確到0.1km).
(2)當運載火箭繼續(xù)直線上升到D處,雷達站測得其仰角為56°,求此時雷達站C和運載火箭D兩點間的距離(結(jié)果精確到0.1km).(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.67.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點A在y軸正半軸上,點B的坐標為(0,﹣3),反比例函數(shù)y=﹣的圖象經(jīng)過點C.
(1)求點C的坐標;
(2)若點P是反比例函數(shù)圖象上的一點且S△PAD=S正方形ABCD;求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com