【題目】一只不透明的袋子中裝有個大小、質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字、、、,攪勻后先從中摸出一個球(不放回),再從余下的個球中摸出個球.
(1)用樹狀圖列出所有可能出現(xiàn)的結(jié)果;
(2)求次摸出的乒乓球球面上數(shù)字的積為偶數(shù)的概率.
【答案】(1)畫圖見解析; (2).
【解析】
試題(1)依據(jù)題意先用列表法或畫樹狀圖法分析所有可能,即可得出答案;
(2)利用所有結(jié)果與所有符合要求的總數(shù),然后根據(jù)概率公式求出該事件的概率.
試題解析:(1)根據(jù)題意畫樹形圖如右圖:
由圖可知共有12種可能結(jié)果,分別為:
(1,-2),(1,3),(1,-4),(-2,1),(-2,3),(-2,-4),(3,1),(3,-2),(3,-4),(-4,1),(-4,-2),(-4,3);
(2)在(1)中的12種可能結(jié)果中,兩個數(shù)字之積為偶數(shù)的只有10種,P(積為偶數(shù))=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,為邊上的中線,過點作于點,過點作平行線,交的延長線于點,在延長線上截得,連結(jié)、.若,,則四邊形的面積等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADC都是等邊三角形,點E,F同時分別從點B,A出發(fā),以相同的速度各自沿BA,AD的方向運動到點A,D停止,連結(jié)EC,FC.
(1)在點E,F運動的過程中,∠ECF的大小是否隨之變化?請說明理由.
(2)在點E,F運動的過程中,以A,E,C,F為頂點的四邊形的面積變化了嗎?請說明理由.
(3)連結(jié)EF,在圖中找出所有和∠ACE相等的角,并說明理由.
(4)若點E,F在射線BA,射線AD上繼續(xù)運動下去,(1)中的結(jié)論還成立嗎?直接寫出結(jié)論,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BD平分∠ABF,且交AE于點D.
(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)設(shè)AP交BD于點O,交BF于點C,連接CD,當(dāng)AC⊥BD時,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩組工人同時加工某種零件,乙組工作中有一次停產(chǎn)更換設(shè)備,更換設(shè)備
后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量(件)與時間(時)的函數(shù)圖
象如圖所示.
(1)求甲組加工零件的數(shù)量y與時間之間的函數(shù)關(guān)系式.(2分)
(2)求乙組加工零件總量的值.(3分)
(3)甲、乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,零件裝箱的時間忽略不計,求經(jīng)過多長時間恰好裝滿第1箱?再經(jīng)過多長時間恰好裝滿第2箱?(5分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)等邊三角形時發(fā)現(xiàn)了直角三角形的一個性質(zhì):直角三角形中,角所對的直角邊等于斜邊的一半。小明同學(xué)對以上結(jié)論作了進一步探究.如圖1,在中,,則:.
探究結(jié)論:(1)如圖1,是邊上的中線,易得結(jié)論:為________三角形.
(2)如圖2,在中,是邊上的中線,點是邊上任意一點,連接,在邊上方作等邊,連接.試探究線段與之間的數(shù)量關(guān)系,寫出你的猜想加以證明.
拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系中,點的坐標(biāo)為,點是軸正半軸上的一動點,以為邊作等邊,當(dāng)點在第一象內(nèi),且時,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線交軸于點,交軸于點.
(1)如圖①,若的坐標(biāo)為,且于點,交于點,試求點的坐標(biāo);
(2)如圖②,在(I)的條件下,連接,求的度數(shù);
(3)如圖③,若點為的中點,點為軸正半軸上一動點,連接,過作交軸于點,當(dāng)點在軸正半軸上運動的過程中,式子的值是否發(fā)生改變?如發(fā)生改變,求出該式子的值的變化范圍;若不改變,求該式子的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市文化宮學(xué)習(xí)十九大有關(guān)優(yōu)先發(fā)展教育的精神,舉辦了為某貧困山區(qū)小學(xué)捐贈書包活動.首次用2000元在商店購進一批學(xué)生書包,活動進行后發(fā)現(xiàn)書包數(shù)量不夠,又購進第二批同樣的書包,所購數(shù)量是第一批數(shù)量的3倍,但單價貴了4元,結(jié)果第二批用了6300元.
(1)求文化官第一批購進書包的單價是多少?
(2)商店兩批書包每個的進價分別是68元和70元,這兩批書包全部售給文化宮后,商店共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】信息1:我們已經(jīng)學(xué)完了解分式方程,它的一般步驟為:確定最簡公分母、化為整式方程、求出整式方程的解、進行檢驗(第一,代入最簡公分母驗證是否為零,第二代入分式方程的左右兩邊檢驗是否相等)、確定分式方程的解.其中代入最簡公分母驗證這一步也就是在驗證所有分式在取此值時是否有意義;
信息2:遇到這種特征的題目,可以兩邊同時平方得到;
信息3:遇到這種特征的題目,可以將左邊變形,得到,進而可以得到或.
結(jié)合上述信息解決下面的問題:
問題1:如果.可得:;
問題2:解關(guān)于b的方程:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com