【題目】如圖,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分線,DE平分∠ADC交AC于E,則∠ADE= °。

【答案】48
【解析】∵在△ABC中,AD是∠BAC的平分線,
∴∠CAD= ∠BAC= (180°-∠B-∠C)= (180°-66°-54°)=30°,
∴在△ADC中,∠ADC=180°-∠CAD-∠C=180°-30°-54°=96°.
又DE平分∠ADC,∴∠ADE= ∠ADC=48°.
【考點(diǎn)精析】掌握三角形的內(nèi)角和外角是解答本題的根本,需要知道三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠A+∠P=( 。

A.70°
B.80°
C.90°
D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AE⊥BC,F(xiàn)G⊥BC,∠1=∠2
(1)求證:AB∥CD
(2)若∠D=∠3+50°,∠CBD=80°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司到果園基地購買某種優(yōu)質(zhì)水果,慰問醫(yī)務(wù)工作者,果園基地對購買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門。乙方案:每千克8元,由顧客自己租車運(yùn)回,已知該公司租車從基地到公司的運(yùn)輸費(fèi)為5000元。

(1)分別寫出該公司兩種購買方案的付款y(元)與所購買的水果質(zhì)量x(千克)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)依據(jù)購買量判斷,選擇哪種購買方案付款最少?并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+3的對稱軸是直線x=1

1求證:2a+b=0;

2若關(guān)于x的方程ax2+bx8=0的一個根為4求方程的另一個根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了進(jìn)一步了解義務(wù)教育階段學(xué)生的體質(zhì)健康狀況,某縣從全縣九年級學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了體質(zhì)抽測.體質(zhì)抽測的結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:合格;D級:不合格.并根據(jù)抽測結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:(1)本次抽測的學(xué)生人數(shù)是   人;

(2)圖(1)中∠α的度數(shù)是   ,并把圖(2)條形統(tǒng)計圖補(bǔ)充完整;

(3)該縣九年級有學(xué)生4800名,如果全部參加這次體質(zhì)測試,請估計不合格的人數(shù)為   

(4)測試?yán)蠋熛霃?位同學(xué)(分別記為E、F、G、H,其中H為小明)中隨機(jī)選擇兩位同學(xué)了解平時訓(xùn)練情況,請用列表或畫樹形圖的方法求出選中小明的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB是⊙O的直徑,直線CP切⊙O于點(diǎn)C,過點(diǎn)B作BD⊥CP于D.

(1)求證:CB2=ABDB;

(2)若⊙O的半徑為2,∠BCP=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在全運(yùn)會射擊比賽的選拔賽中,運(yùn)動員甲10次射擊成績的統(tǒng)計表(表1)和扇形統(tǒng)計圖如下:

表1
(1)根據(jù)統(tǒng)計表(圖)中提供的信息,補(bǔ)全統(tǒng)計表及扇形統(tǒng)計圖;
(2)已知乙運(yùn)動員10次射擊的平均成績?yōu)?環(huán),方差為1.2,如果只能選一人參加比賽,你認(rèn)為應(yīng)該派誰去?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人之間相互傳球,球從一個人手中隨機(jī)傳到另外一個人手中,共傳球三次.

(1)若開始時球在甲手中,求經(jīng)過三次傳球后,球傳回甲手中的概率是多少?

(2)若丙想使球經(jīng)過三次傳遞后,球落在自己手中的概率最大,丙會讓球開始時在誰手中?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案