【題目】如圖,已知CD平分∠ACB,∠1=2

1)求證:DEAC;

2)若∠3=30°,∠B=25°,求∠BDE的度數(shù).

【答案】(1)詳見解析;(2)95°

【解析】

1)先根據(jù)角平分線的定義得出∠2=3,再由∠1=2可得出∠1=3,進(jìn)而可得出結(jié)論;
2)根據(jù)∠3=30°可得出∠ACB的度數(shù),再由平行線的性質(zhì)得出∠BED的度數(shù),由三角形內(nèi)角和定理即可得出結(jié)論.

1)證明:∵CD平分∠ACB,

∴∠2=3

∵∠1=2

∴∠1=3,

DEAC

2)解:∵CD平分∠ACB,∠3=30°,

∴∠ACB=23=60°

DEAC,

∴∠BED=ACB=60°

∵∠B=25°,

∴∠BDE=180°-60°-25°=95°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD、EF相交于點(diǎn)OOGCD,∠BOD=32°.

1)求∠AOG的度數(shù);

2)如果OC是∠AOE的平分線,那么OG是∠AOF的平分線嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是邊AB的四等分點(diǎn),DE∥AC,DF∥BC,AC=8,BC=12,求四邊形DECF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按如圖的程序進(jìn)行操作,規(guī)定:程序運(yùn)行從輸入一個值x”結(jié)果是否>487為一次操作. ①如果輸入x的值為5,那么操作進(jìn)行______次才停止.

②如果輸入x的值為2k-1,并且操作進(jìn)行四次才停止,那么k的最大值是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售10A型和20B型電腦的利潤為4000元,銷售20A型和10B型電腦的利潤為3500元.

(1)求每臺A型電腦和B型電腦的銷售利潤;

(2)該商店計劃一次購進(jìn)兩種型號的電腦共50臺,其中A型電腦的進(jìn)貨量不少于14臺,B型電的進(jìn)貨量不少于A型電腦的2倍,那么該商店有幾種進(jìn)貨方案?該商場購進(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大?

(3)實(shí)際進(jìn)貨時,廠家對A型電腦出廠價下調(diào)m (0<m<100)元,若商店保持兩種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這50臺電腦銷售總利潤最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“一帶一路”讓中國和世界更緊密,“中歐鐵路”為了安全起見在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈A射線從AM開始順時針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線從BP開始順時針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動的速度是每秒2度,燈B轉(zhuǎn)動的速度是每秒1度.假定主道路是平行的,即PQMN,且∠BAM:∠BAN=2:1.

(1)填空:∠BAN=_____°;

(2)若燈B射線先轉(zhuǎn)動30秒,燈A射線才開始轉(zhuǎn)動,在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動幾秒,兩燈的光束互相平行?

(3)如圖2,若兩燈同時轉(zhuǎn)動,在燈A射線到達(dá)AN之前.若射出的光束交于點(diǎn)C,過C作ACD交PQ于點(diǎn)D,且ACD=120°,則在轉(zhuǎn)動過程中,請?zhí)骄?/span>BAC與BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出其數(shù)量關(guān)系;若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明

如圖,FG//CD,∠1=∠3,∠B=50°,求BDE的度數(shù).

:∵FG//CD (已知)

∴∠2=_________(____________________________)

又∵∠1=∠3,

∴∠3=∠2(等量代換)

BC//__________(_____________________________)

∴∠B+________=180°(______________________________)

又∵∠B=50°

∴∠BDE=________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張長方形的紙條ABCD沿EF折疊,AD于點(diǎn)G,若折疊后

(1)求∠CEF的度數(shù);

(2)求證:EFG是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀與思考:

閱讀理解問題——代數(shù)問題幾何化 1.閱讀理解以下文字: 我們知道,多項(xiàng)式的因式分解就是將一個多項(xiàng)式化成幾個整 式的積的形式.通過因式分解,我們常常將一個次數(shù)比較高 的多項(xiàng)式轉(zhuǎn)化成幾個次數(shù)較低的整式的積,來達(dá)到降次化簡 的目的.這個思想可以引領(lǐng)我們解決很多相對復(fù)雜的代數(shù)問 題.

例如:方程 2x2+3x=0 就可以這樣來解:

解:原方程可化為 x2x+3=0,

所以x=0 或者 2x+3=0

解方程 2x+3=0,得 x=- ∴原方程的解為 x=0x=- .

根據(jù)你的理解,結(jié)合所學(xué)知識,解決以下問題:

1)解方程:3x2-x=0

2)解方程:(x+32-4x2=0

3)已知ABC 的三邊長為 4,xy,請你判斷代數(shù)式y2 -8y+16-x2的值的符號.

查看答案和解析>>

同步練習(xí)冊答案