【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績情況如圖所示:
(1)請?zhí)顚懴卤?
平均數(shù) | 方差 | 中位數(shù) | 命中9環(huán)及以上的次數(shù) | |
甲 | 7 | 1.2 | 1 | |
乙 | 5.4 |
(2)請從下列四個(gè)不同的角度對這次測試結(jié)果進(jìn)行分析:
①從平均數(shù)和方差相結(jié)合看;
②從平均數(shù)和中位數(shù)相結(jié)合看(分析誰的成績好些);
③從平均數(shù)和命中9環(huán)以上的次數(shù)相結(jié)合看(分析誰的成績好些);
④從折線圖上兩人射擊命中環(huán)數(shù)的走勢看(分析誰更有潛力).
【答案】(1)如表
平均數(shù) | 方差 | 中位數(shù) | 命中9環(huán)及以上的次數(shù) | |
甲 | 7 | 1.2 | 7 | 1 |
乙 | 7 | 5.4 | 7.5 | 3 |
(2)①甲、乙平均成績一樣,甲方差較小,甲發(fā)揮更穩(wěn)定.
②從平均數(shù)和中位數(shù)相結(jié)合看,乙的成績更好些.
③從平均數(shù)和命中9環(huán)以上的次數(shù)相結(jié)合看,說明乙的成績好些.
④乙的成績呈上升趨勢,乙更有潛力.
【解析】(1)根據(jù)平均數(shù)、中位數(shù)、方差的求法.
(2)①平均數(shù)相同的情況下,比較方差看誰更為穩(wěn)定.
②乙的中位數(shù)比甲大,說明乙中間水平比甲高.
③乙命中9環(huán)以上的次數(shù)是3次,而甲只有一次.
④從折線統(tǒng)計(jì)圖上看,乙在不斷地上升,并且得到較高環(huán)次數(shù)也較多,說明乙具備潛力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥EF,∠BCD=135°,∠FDC=85°,則∠B+∠F的度數(shù)為( )
A.38°
B.40°
C.55°
D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,最適合采用全面調(diào)查(普查)方式的是( )
A. 對重慶市轄區(qū)內(nèi)長江流域水質(zhì)情況的調(diào)查
B. 對乘坐飛機(jī)的旅客是否攜帶違禁物品的調(diào)查
C. 對一個(gè)社區(qū)每天丟棄塑料袋數(shù)量的調(diào)查
D. 對重慶電視臺“天天630”欄目收視率的調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形具有而平行四邊形不一定具有的性質(zhì)是( 。
A. 對角相等 B. 對邊相等
C. 對角線相等 D. 對角線互相平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮和小瑩自制了一個(gè)標(biāo)靶進(jìn)行投標(biāo)比賽,兩人各投了10次,如圖是他們投標(biāo)成績的統(tǒng)計(jì)圖.
(1)根據(jù)圖中信息填寫下表
平均數(shù) | 中位數(shù) | 眾數(shù) | |
小亮 | 7 | ||
小瑩 | 7 | 9 |
(2)分別用平均數(shù)和中位數(shù)解釋誰的成績比較好.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙、丙三個(gè)廠家生產(chǎn)的同一種產(chǎn)品中抽取 8 件產(chǎn)品,對其使用壽命跟 蹤調(diào)查.結(jié)果如下(單位:年)
三個(gè)廠家在廣告中都稱該產(chǎn)品的使用壽命是 8 年,請根據(jù)結(jié)果來判斷廠家在廣告中分別 運(yùn)用了平均數(shù)、眾數(shù)、中位數(shù)的哪一種集中趨勢的特征數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知AB∥CD,EF⊥AB于點(diǎn)O,∠FGC=131°,求∠EFG的度數(shù). 下面提供三種思路:
(1)過點(diǎn)F作FH∥AB;
(2)延長EF交CD于M;
(3)延長GF交AB于K.
請你利用三個(gè)思路中的兩個(gè)思路,將圖形補(bǔ)充完整,求∠EFG的度數(shù).
解(一):
解(二):
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AD⊥BC,AE平分∠BAC交BC于點(diǎn)E.
(1)∠B=30°,∠C=70°,求∠EAD的大小;
(2)若∠B<∠C,則2∠EAD與∠C-∠B是否相等?若相等,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com