某中學有一塊長a米、寬b米的矩形場地.計劃建如圖的人行道(陰影部分),道寬為2米,余下部分建成草坪,已知a:b=2:1,并且草坪的面積為312米3,求原來矩形場地的長和寬各為多少米?
分析:本題根據(jù)題意可得草坪的長為(2b-2),寬為(b-2)米,再根據(jù)矩形的面積公式列出方程,求出b的值,再根據(jù)a:b=2:1即可求出a的值.
解答:解:依題意得:
(2b-2)(b-2)=312,
解得:b1=14,b2=-11(不符合題意,舍去),
∴a=14×2=28米,
答:原來矩形場地的長和寬各為28米和14米.
點評:此題考查了一元二次方程的應用;關鍵是用b表示出草坪的長和寬,對于面積問題應熟記各種圖形的面積公式,然后根據(jù)題意列出方程求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某中學有一塊長為a米,寬為b米的矩形場地,計劃在該場地上修筑寬都為2米的兩條互相垂直的道路,余下的四塊矩形小場地建成草坪.
(1)如圖,請分別寫出每條道路的面積(用含a或含b的代數(shù)式表示);
(2)已知a:b=2:1,并且四塊草坪的面積之和為312米2,試求原來矩形場地的長與寬各為多少米?
(3)在(2)的條件下,為進一步美化校園,根據(jù)實際情況,學校決定對整個矩形場地作如下設計(要求同時符合下述兩個條件):
條件①:在每塊草坪上各修建一個面積盡可能大的菱形花圃(花圃各邊必須分別與所在草坪的對角線平行),并且其中有兩個花圃的面積之差為13米2;
條件②:整個矩形場地(包括道路、草坪、花圃)為軸對稱圖形.
請你畫出符合上述設計方案的一種草圖(不必說明畫法與根據(jù)),并求出每個菱形花圃的面積.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某中學有一塊長a米、寬b米的矩形場地.計劃建如圖的人行道(陰影部分),道寬為2米,余下部分建成草坪,已知a:b=2:1,并且草坪的面積為312米3,求原來矩形場地的長和寬各為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年新人教版九年級(上)期末數(shù)學模擬試卷(解析版) 題型:解答題

某中學有一塊長a米、寬b米的矩形場地.計劃建如圖的人行道(陰影部分),道寬為2米,余下部分建成草坪,已知a:b=2:1,并且草坪的面積為312米3,求原來矩形場地的長和寬各為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

(2002•泉州)某中學有一塊長為a米,寬為b米的矩形場地,計劃在該場地上修筑寬都為2米的兩條互相垂直的道路,余下的四塊矩形小場地建成草坪.
(1)如圖,請分別寫出每條道路的面積(用含a或含b的代數(shù)式表示);
(2)已知a:b=2:1,并且四塊草坪的面積之和為312米2,試求原來矩形場地的長與寬各為多少米?
(3)在(2)的條件下,為進一步美化校園,根據(jù)實際情況,學校決定對整個矩形場地作如下設計(要求同時符合下述兩個條件):
條件①:在每塊草坪上各修建一個面積盡可能大的菱形花圃(花圃各邊必須分別與所在草坪的對角線平行),并且其中有兩個花圃的面積之差為13米2;
條件②:整個矩形場地(包括道路、草坪、花圃)為軸對稱圖形.
請你畫出符合上述設計方案的一種草圖(不必說明畫法與根據(jù)),并求出每個菱形花圃的面積.

查看答案和解析>>

同步練習冊答案