【題目】某市為加固長90米,高30米,壩頂寬為6米,迎水坡和背水坡都是1:1的橫斷面是梯形的防洪大壩,要將大壩加高2米,背水坡坡度改為1:1.5,已知壩頂寬不變,求大壩橫戴面積增加多少平方米?
【答案】大壩橫戴面積增加392平方米.
【解析】
過C作CG⊥AB于G,過D作DH⊥AB于H,過F作FM⊥AB于M,過E作EN⊥AB于N,求出AQ和BQ的長,根據(jù)題意得出增加的面積等于加寬后的梯形面積減去原來的梯形面積,根據(jù)梯形的面積公式求出即可.
過C作CG⊥AB于G,過D作DH⊥AB于H,過F作FM⊥AB于M,過E作EN⊥AB于N,
則四邊形CDHG和四邊形EFMN是矩形,
即CG=DH=30m,FM=EN=30+2=32(m),
∵梯形BCDQ的迎水坡和背水坡的坡度都是1:1,
∴BG=QH=30m,
同理AM=32×1.5=48(m),QN=32m,
∴AQ=48+6+32=86(m),BQ=30+6+30=66(m),
大壩橫截面面積增加×(6+86)×32-×(6+66)×30=392(m2),
答:大壩橫戴面積增加392平方米.
科目:初中數(shù)學 來源: 題型:
【題目】選擇適當?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(x-1)2+2x(x-1)=0;
(2)x2-6x-6=0;
(3)6 000(1-x)2=4 860;
(4)(10+x)(50-x)=800;
(5)(2x-1)2=x(3x+2)-7.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.
(1)判斷△OBC的形狀,并證明你的結論
(2)求BC的長
(3)求⊙O的半徑OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點,點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為 時,四邊形AMDN是矩形;②當AM的值為 時,四邊形AMDN是菱形。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,陽光通過窗口照到教室內,豎直窗框在地面上留下2.1 m長的影子如圖所示,已知窗框的影子DE的點E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,OH⊥AC于點H,過A點的切線與OC的延長線交于點D,∠B=30°,OH=5,請求出:
(1)∠AOC的度數(shù);
(2)劣弧的長;(結果保留π)
(3)線段AD的長.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,下列條件中不能判定直線AT是⊙O的切線的是( )
A. AB=4,AT=3,BT=5 B. ∠B=45°,AB=AT
C. ∠B=55°,∠TAC=55° D. ∠ATC=∠B
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是矩形,cot∠ADB=,AB=16.點E在射線BC上,點F在線段BD上,且∠DEF=∠ADB.
(1)求線段BD的長;
(2)設BE=x,△DEF的面積為y,求y關于x的函數(shù)關系式,并寫出函數(shù)定義域;
(3)當△DEF為等腰三角形時,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為Rt△ABC的直角邊AC上一點,以OC為半徑的⊙O與斜邊AB相切于點D,交OA于點E.已知BC=,AC=3.
(1)求AD的長;
(2)求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com