【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點B(1, 0)、C(3, 0)、D(3, 4).以A為頂點的拋物線y=ax2+bx+c過點C.動點P從點A出發(fā),以每秒個單位的速度沿線段AD向點D運動,運動時間為t秒.過點P作PE⊥x軸交拋物線于點M,交AC于點N.
(1)直接寫出點A的坐標(biāo),并求出拋物線的解析式;
(2)當(dāng)t為何值時,△ACM的面積最大?最大值為多少?
(3)點Q從點C出發(fā),以每秒1個單位的速度沿線段CD向點D運動,當(dāng)t為何值時,在線段PE上存在點H,使以C、Q、N、H為頂點的四邊形為菱形?
【答案】(1)A(1,4);y=-x2+2x+3;(2)當(dāng)t=2時,△AMC面積的最大值為1;(3)或.
【解析】(1)由矩形的性質(zhì)得到點A的坐標(biāo),由拋物線的頂點為A,設(shè)拋物線的解析式為y=a(x-1)2+4,把點C的坐標(biāo)代入即可求得a的值;
(2)由點P的坐標(biāo)以及拋物線解析式得到點M的坐標(biāo),由A、C的坐標(biāo)得到直線AC的解析式,進(jìn)而得到點N的坐標(biāo),即可用關(guān)于t的式子表示MN,然后根據(jù)△ACM的面積是△AMN和△CMN的面積和列出用t表示的△ACM的面積,利用二次函數(shù)的性質(zhì)即可得到當(dāng)t=2時,△AMC面積的最大值為1;
(3)①當(dāng)點H在N點上方時,由PN=CQ,PN∥CQ,得到四邊形PNCQ為平行四邊形,所以當(dāng)PQ=CQ時,四邊形FECQ為菱形,據(jù)此得到,解得t值;②當(dāng)點H在N點下方時,NH=CQ=,NQ=CQ時,四邊形NHCQ為菱形,NQ2=CQ2,得:,解得t值.
解:(1)由矩形的性質(zhì)可得點A(1,4),
∵拋物線的頂點為A,
設(shè)拋物線的解析式為y=a(x-1)2+4,
代入點C(3, 0),可得a=-1.
∴y=-(x-1)2+4=-x2+2x+3.
(2)∵P(,4),
將代入拋物線的解析式,y=-(x-1)2+4=,
∴M(, ),
設(shè)直線AC的解析式為,
將A(1,4),C(3,0)代入,得:,
將代入得,
∴N(,),
∴MN ,
∴,
∴當(dāng)t=2時,△AMC面積的最大值為1.
(3)①如圖1,當(dāng)點H在N點上方時,
∵N(,),P(,4),
∴PN=4—()==CQ,
又∵PN∥CQ,
∴四邊形PNCQ為平行四邊形,
∴當(dāng)PQ=CQ時,四邊形FECQ為菱形,
PQ2=PD2+DQ2 =,
∴,
整理,得.解得, (舍去);
②如圖2當(dāng)點H在N點下方時,
NH=CQ=,NQ=CQ時,四邊形NHCQ為菱形,
NQ2=CQ2,得:.
整理,得. .所以,(舍去).
“點睛”此題主要考查二次函數(shù)的綜合問題,會用頂點式求拋物線,會用兩點法求直線解析式,會設(shè)點并表示三角形的面積,熟悉矩形和菱形的性質(zhì)是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點C在x軸上方,y軸左側(cè),距離x軸2個單位長度,距離y軸3個單位長度,則點C的坐標(biāo)為( )
A.(﹣3,2)
B.(﹣2,﹣3)
C.(﹣2,3)
D.( 3,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為10個檔次,據(jù)調(diào)研顯示,每個檔次的日產(chǎn)量及相應(yīng)的單件利潤如下表所示(其中x為正整數(shù),且1≤x≤10):
為了便于調(diào)控,此工廠每天只生產(chǎn)一個檔次的產(chǎn)品.當(dāng)生產(chǎn)質(zhì)量檔次為x的產(chǎn)品時,當(dāng)天的利潤為y萬元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)工廠為獲得最大利潤,應(yīng)選擇生產(chǎn)哪個檔次的產(chǎn)品?并求出當(dāng)天利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句中正確的是( )
A.正整數(shù)和負(fù)整數(shù)統(tǒng)稱為整數(shù)
B.有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)
C.開方開不盡的數(shù)和π統(tǒng)稱為無理數(shù)
D.正數(shù)、0、負(fù)數(shù)統(tǒng)稱為有理數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點A(m,n)和點B(5,﹣7)關(guān)于x軸對稱,則m+n的值是( 。
A. 2 B. ﹣2 C. 12 D. ﹣12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l與⊙O相離,OA⊥l于點A,交⊙O于點P,OA=5,AB與⊙O相切于點B,BP的延長線交直線l于點C.
(1)求證:AB=AC;
(2)若,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com