如圖,在Rt△ABC中,∠C=90°,sinB=,點(diǎn)D在BC邊上,∠ADC=45°,DC=6,
求∠BAD的正切值.

【答案】分析:過D點(diǎn)作DE⊥AB,交AB于E點(diǎn).把∠BAD構(gòu)造到了直角三角形中,要求∠BAD的正切值,只需求得DE,AE的長.根據(jù)等腰直角三角形的性質(zhì)可以求得AC,AD的長,在直角三角形ABC中,根據(jù)sinB=,可以求得AB的長,根據(jù)勾股定理進(jìn)一步求得BC的長,從而求得BD的長,在直角三角形BDE中,根據(jù)sinB=,可以進(jìn)一步求得DE的長,根據(jù)勾股定理求得BE的長,即可進(jìn)行計(jì)算.
解答:解:過D點(diǎn)作DE⊥AB,交AB于E點(diǎn),
在Rt△ADC中,∠C=90°,∠ADC=45°,DC=6,
∴∠DAC=45°,
∴AC=DC=6,
在Rt△ABC中,∠C=90°,
∵sinB=,
,
設(shè)AC=3k,則AB=5k,
∴3k=6,
∴k=2,
∴AB=5k=10,
根據(jù)勾股定理,得BC=8,
∴BD=BC-DC=8-6=2(3分)
在Rt△BDE中,∠BED=90°,sinB=,
,DE=
根據(jù)勾股定理,得BE=,
∴AE=AB-BE=10-=,
∴tan∠BAD=
點(diǎn)評(píng):能夠巧妙作垂線,構(gòu)造直角三角形.根據(jù)等腰直角三角形的性質(zhì)和銳角三角函數(shù)的概念和勾股定理可以由已知的線段求得該圖中所有的未知線段.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案