【提出問題】

(1)如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.

【類比探究】

(2)如圖2,在等邊△ABC中,點(diǎn)M是BC延長線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.

【拓展延伸】

(3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.

 

【答案】

見解析

【解析】解:(1)證明:∵△ABC、△AMN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°。

∴∠BAM=∠CAN。

∵在△BAM和△CAN中,,

∴△BAM≌△CAN(SAS)!唷螦BC=∠ACN。

(2)結(jié)論∠ABC=∠ACN仍成立。理由如下:

∵△ABC、△AMN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°。

∴∠BAM=∠CAN。

∵在△BAM和△CAN中,,

∴△BAM≌△CAN(SAS)。∴∠ABC=∠ACN。

(3)∠ABC=∠ACN。理由如下:

∵BA=BC,MA=MN,頂角∠ABC=∠AMN,∴底角∠BAC=∠MAN。

∴△ABC∽△AMN!

又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN.

∴△BAM∽△CAN!唷螦BC=∠ACN。

(1)利用SAS可證明△BAM≌△CAN,繼而得出結(jié)論。

(2)也可以通過證明△BAM≌△CAN,得出結(jié)論,和(1)的思路完全一樣。

(3)首先得出∠BAC=∠MAN,從而判定△ABC∽△AMN,得到,根據(jù)∠BAM=∠BAC﹣

∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,從而判定△BAM∽△CAN,得出結(jié)論。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衢州)【提出問題】
(1)如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點(diǎn)M是BC延長線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【提出問題】
(1)如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點(diǎn)M是BC延長線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省南京市鼓樓區(qū)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

【提出問題】
如圖①,在梯形ABCD中,AD//BC,AC、BD交于點(diǎn)E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?
【探究過程】
小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?
如圖③,過點(diǎn)D做DE//AC交BC的延長線于點(diǎn)E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設(shè)AC=x,BD=y(tǒng),那么S△DBE=xy.
以下是幾位同學(xué)的對(duì)話:
A同學(xué):因?yàn)閥=,所以S△DBE=x,求這個(gè)函數(shù)的最大值即可.
B同學(xué):我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同學(xué):△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.

(1)請選擇A同學(xué)或者B同學(xué)的方法,完成解題過程.
(2)請幫C同學(xué)在圖③中畫出所有滿足條件的點(diǎn)D,并標(biāo)出使△DBE面積最大的點(diǎn)D1.(保留作圖痕跡,可適當(dāng)說明畫圖過程)
【解決問題】
根據(jù)對(duì)特殊情況的探究經(jīng)驗(yàn),請?jiān)趫D①中畫出面積最大的梯形ABCD的頂點(diǎn)D1,并直接寫出梯形ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京市鼓樓區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

【提出問題】

如圖①,在梯形ABCD中,AD//BC,AC、BD交于點(diǎn)E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?

【探究過程】

小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?

如圖③,過點(diǎn)D做DE//AC交BC的延長線于點(diǎn)E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設(shè)AC=x,BD=y(tǒng),那么S△DBE=xy.

以下是幾位同學(xué)的對(duì)話:

A同學(xué):因?yàn)閥=,所以S△DBE=x,求這個(gè)函數(shù)的最大值即可.

B同學(xué):我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值

C同學(xué):△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.

(1)請選擇A同學(xué)或者B同學(xué)的方法,完成解題過程.

(2)請幫C同學(xué)在圖③中畫出所有滿足條件的點(diǎn)D,并標(biāo)出使△DBE面積最大的點(diǎn)D1.(保留作圖痕跡,可適當(dāng)說明畫圖過程)

【解決問題】

根據(jù)對(duì)特殊情況的探究經(jīng)驗(yàn),請?jiān)趫D①中畫出面積最大的梯形ABCD的頂點(diǎn)D1,并直接寫出梯形ABCD面積的最大值.

 

查看答案和解析>>

同步練習(xí)冊答案