【題目】小穎和小紅兩名同學在學習概率時,做擲骰子(質(zhì)地均勻的正方體)試驗。

(1)小穎和小紅在實驗中如果各擲一枚骰子,那么兩枚骰子朝上的點數(shù)之和為多少時的概率最大?試用列表或畫樹狀圖的方法加以說明,并求出其最大概率。

(2)他們在一次實驗中共擲骰子60次,試驗的結(jié)果如下:

①填空:此次實驗中“5點朝上的頻率為______;

②小紅說:根據(jù)實驗,出現(xiàn)5點朝上的概率最大。她的說法正確嗎?為什么?

【答案】(1)P(點數(shù)之和為7) =;(2);②說法是錯誤的。在這次試驗中,“5點朝上”的頻率最大并不能說明“5點朝上”這一事件發(fā)生的概率最大。因為當試驗的次數(shù)較大時,頻率穩(wěn)定于概率,但并不完全等于概率。

【解析】

1)列舉出所有情況,比較兩枚骰子朝上的點數(shù)之和的情況數(shù),進而讓最多的情況數(shù)除以所有情況數(shù)的即可.
2)①讓5出現(xiàn)的次數(shù)除以總次數(shù)即為所求的頻率;②根據(jù)概率的意義,需要大量試驗才行.

解:(1)列表如下

(1,6)

(2,6)

(3,6)

(4,6)

(5,6)

(6,6)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

(6,5)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

由表格可以看出,總情況數(shù)有36種,之和為7的情況數(shù)最多,為6種,

所以P(點數(shù)之和為7)==.

(2)①)①此次試驗中“5點朝上”的頻率為20÷60=

②說法是錯誤的.在這次試驗中,“5點朝上”的頻率最大并不能說明“5點朝上”這一事件發(fā)生的概率最大.因為當試驗的次數(shù)較大時,頻率穩(wěn)定于概率,但并不完全等于概率.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C為ABD外接圓上的一動點點C不在上,且不與點B,D重合,ACB=ABD=45°

1求證:BD是該外接圓的直徑;

2連結(jié)CD,求證:AC=BC+CD;

3ABC關(guān)于直線AB的對稱圖形為ABM,連接DM,試探究,三者之間滿足的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>

1)(x+6251

2x22x2x1

3x2x2

4xx7)=87x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠BAC120°,ABAC6D為邊AB上一動點(不與B點重合),連接CD,將線段CD繞著點D逆時針旋轉(zhuǎn)90°得到DE,連接BE,則SBDE的最大值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系內(nèi)一點Mx,y)(x≠0),若則稱k為點M傾斜比,如圖,⊙By軸相切于點A,點B坐標為(3,5),P為⊙B上的動點,則點P傾斜比”k的最小值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“測量物體的高度” 活動中,某數(shù)學興趣小組的3名同學選擇了測量學校里的棵樹的高度.在同一時刻的陽光下,他們分別做了以下工作:

小芳:測得一根長為1米的竹竿的影長為0.8米,甲樹的影長為4米如圖1

小華:發(fā)現(xiàn)乙樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上如圖2),墻壁上的影長為1.2米,落在地面上的影長為2.4米

小麗:測量的丙樹的影子除落在地面上外,還有一部分落在教學樓的第一級臺階上如圖3),測得此影子長為0.3米,一級臺階高為0.3米,落在地面上的影長為4.5米

1在橫線上直接填寫甲樹的高度為 米.

2求出乙樹的高度.

3請選擇丙樹的高度為( )

A、6.5米 B、5. 5米 C、6.3米 D、4.9米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩塊全等的三角板如圖①擺放,其中∠A1CB1=ACB=90°,A1=A=30°.

(1)將圖①中的A1B1C順時針旋轉(zhuǎn)45°得圖②,點P1A1CAB的交點,點QA1B1BC的交點,求證:CP1=CQ;

(2)在圖②中,若AP1=2,則CQ等于多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以圓O為圓心,半徑為1的弧交坐標軸于A,B兩點,P是弧上一點(不與A,B重合),連接OP,設(shè)∠POB=α,則點P的坐標是

A. sinαsinα B. cosα,cosα C. cosαsinα D. sinα,cosα

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,yx滿足如下關(guān)系:

(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?

(2)設(shè)第x天生產(chǎn)的產(chǎn)品成本為P/件,P的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求Wx的函數(shù)關(guān)系式,并求出第幾天時利潤最大,最大利潤是多少?

查看答案和解析>>

同步練習冊答案