【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,給出了格點(diǎn)四邊形ABCD(頂點(diǎn)為網(wǎng)格線的交點(diǎn)).

1)畫出四邊形ABCD關(guān)于x軸成軸對(duì)稱的四邊形A1B1C1D1;

2)以O為位似中心,在第三象限畫出四邊形ABCD的位似四邊形A2B2C2D2,且位似比為1;

3)在第一象限內(nèi)找出格點(diǎn)P,使∠DCP=CDP,并寫出點(diǎn)P的坐標(biāo)(寫出一個(gè)即可).

【答案】1)畫圖見(jiàn)解析;(2)畫圖見(jiàn)解析;(3)點(diǎn)P5,3)或(2,2

【解析】

1)分別作出點(diǎn)A、B、CD關(guān)于x軸對(duì)稱點(diǎn),順次連接即可;

2)利用位似圖形的性質(zhì),延長(zhǎng)AOA2,使AO=OA2,同理分別作出B、C、D的對(duì)應(yīng)點(diǎn),順次連接即可;

3)由∠DCP=∠CDPPC=PD,即點(diǎn)P在線段CD的垂直平分線上,即可找到符合條件的點(diǎn)P

1)如圖所示,四邊形A1B1C1D1就是所求作的圖形;

2)如圖所示,四邊形A2B2C2D2就是所求作的圖形;

(3)由圖可知,點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OABCD的對(duì)稱中心,點(diǎn)A的坐標(biāo)為(-2,-2),AB=5,AB//x軸,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)D,將ABCD沿y軸向下平移,使點(diǎn)C的對(duì)應(yīng)點(diǎn)C'落在反比例函數(shù)的圖象上,則平移過(guò)程中線段AC掃過(guò)的面積為( )

A.24B.20C.18D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在扇形中,的中點(diǎn),的中點(diǎn),點(diǎn)上,點(diǎn)上,四邊形是矩形,連接.若,則陰影部分的面積為____________.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:函數(shù)的圖象關(guān)于軸對(duì)稱,點(diǎn)軸上一點(diǎn),將函數(shù)的圖象位于直線左側(cè)的部分,以軸為對(duì)稱軸翻折,得到新的函數(shù)的圖象,我們稱函數(shù)是函數(shù)的對(duì)稱折函數(shù),函數(shù)的圖象記作,函數(shù)的圖象位于直線上以及右側(cè)的部分記作,圖象合起來(lái)記作圖象

例如:如圖,函數(shù)的解析式為,當(dāng)時(shí),它的對(duì)稱折函數(shù)的解析式為

1)函數(shù)的解析式為,當(dāng)時(shí),它的對(duì)稱折函數(shù)的解析式為_______;

2)函數(shù)的解析式為,當(dāng)時(shí),求圖象上點(diǎn)的縱坐標(biāo)的最大值和最小值;

3)函數(shù)的解析式為.若,直線與圖象有兩個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,是正方形上的一點(diǎn),連接,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后角的兩邊分別與射線交于點(diǎn)和點(diǎn).寫出線段,之間的數(shù)量關(guān)系,并說(shuō)明理由;

2)當(dāng)四邊形為菱形,,點(diǎn)是菱形所在直線上的一點(diǎn),連接,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后角的兩邊分別與射線交于點(diǎn)和點(diǎn)

①如圖2,點(diǎn)在線段上時(shí),請(qǐng)?zhí)骄烤段,之間的數(shù)量關(guān)系,寫出結(jié)論并給出證明;

②如圖3,點(diǎn)在線段的延長(zhǎng)線上時(shí),交射線于點(diǎn),若,直接寫出線段的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù)y=x2-2mx-m24m-2的對(duì)稱軸為l,拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D

1)判斷拋物線與x軸的交點(diǎn)情況;

2)如圖1,當(dāng)m=1時(shí),點(diǎn)P為第一象限內(nèi)拋物線上一點(diǎn),且PCD是以PD為腰的等腰三角形,求點(diǎn)P的坐標(biāo);

3)如圖2,直線和拋物線交于點(diǎn)A、B兩點(diǎn),與l交于點(diǎn)M,且MO=MB,點(diǎn)Qx0,y0)在拋物線上,當(dāng)m1時(shí),時(shí),求h的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)、兩種商品,購(gòu)買1個(gè)商品比購(gòu)買1個(gè)商品多花10元,并且花費(fèi)300元購(gòu)買商品和花費(fèi)100元購(gòu)買商品的數(shù)量相等.

1)求購(gòu)買一個(gè)商品和一個(gè)商品各需要多少元;

2)商店準(zhǔn)備購(gòu)買、兩種商品共80個(gè),若商品的數(shù)量不少于商品數(shù)量的4倍,并且購(gòu)買、商品的總費(fèi)用不低于1000元且不高于1050元,那么商店有哪幾種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,分別是,軸上的點(diǎn),且,,為線段的中點(diǎn),,軸正半軸上的任意一點(diǎn),連結(jié),以為邊按順時(shí)針?lè)较蜃髡叫?/span>

1)填空:點(diǎn)的坐標(biāo)為______

2)記正方形的面積為,①求關(guān)于的函數(shù)關(guān)系式;②當(dāng)時(shí),求的值.

3)是否存在滿足條件的的值,使正方形的頂點(diǎn)落在的邊上?若存在,求出所有滿足條件的的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,, ,直線點(diǎn)上的動(dòng)點(diǎn),過(guò)三點(diǎn)的圓交直線于點(diǎn),連結(jié)

當(dāng)點(diǎn)與點(diǎn)重合時(shí)如圖2所示,連,求證:四邊形是矩形

如圖3,當(dāng)與過(guò)三點(diǎn)的圓相切時(shí),求的長(zhǎng)

作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),試判斷能否落在直線上,若能請(qǐng)直接寫出的長(zhǎng),若不能說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案