【題目】如圖,四邊形ABCD是一片水田,某村民小組需計算其面積,測得如下數(shù)據(jù):∠A=90°,∠ABD=60°,∠CBD=54°,AB=200 m,BC=300 m.請你計算出這片水田的面積.(參考數(shù)據(jù):sin 54°≈0.809,cos 54°≈0.588,tan 54°≈1.376,=1.732)
【答案】83180
【解析】作CM⊥BD于M,由含30°角的直角三角形的性質求出BD,由勾股定理求出AD,求出△ABD的面積,再由三角函數(shù)求出CM,求出△BCD的面積,然后根據(jù)S四邊形ABCD=S△ABD+S△BCD列式計算即可得解.
∵∠A=90°,∠ABD=60°,
∴∠ADB=30°,
∴BD=2AB=400 m,
∴AD=AB=200 m,
∴△ABD的面積=×200×200=20000m2.
∵∠CMB=90°,∠CBD=54°,
∴CM=BC·sin 54°=300×0.809=242.7m.
∴△BCD的面積=×400×242.7=48540m2.
∴這片水田的面積=20000+48 540≈83180m2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,E在線段AC上,D在AB的延長線,連DE交BC于F,過點E作EG⊥BC于G.
(1)若∠A=50°,∠D=30°,求∠GEF的度數(shù);
(2)若BD=CE,求證:FG=BF+CG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場新進一批A、B兩種型號的節(jié)能防近視臺燈,每臺進價分別為200元、170元,近兩周的銷售情況如下:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1800元 |
第二周 | 4臺 | 10臺 | 3100元 |
進價、售價均保持不變,利潤銷售收入進貨成本
求A、B兩種型號的臺燈的銷售單價;
若該商場準備用不多于5400元的金額再購進這兩種型號的臺燈共30臺,求A種型號的臺燈最多能購進多少臺?
在的條件下,能否求出該商場銷售完這30臺臺燈所獲得的最大利潤若能,求出最大利潤;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程mx2-2x+1=0.
(1)若方程有兩個實數(shù)根,求m的取值范圍;
(2)若方程的兩個實數(shù)根為x1,x2,且x1x2-x1-x2=,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,6),點C的坐標為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:在△ABC中,∠B=2∠C,點D為線段BC上一動點,當AD滿足某種條件時,探討在線段AB、BD、CD、AC四條線段中,某兩條或某三條線段之間存在的數(shù)量關系.
例如:在圖1中,當AB=AD時,可證得AB=DC,現(xiàn)在繼續(xù)探索:
任務要求:
(1)當AD⊥BC時,如圖2,求證:AB+BD=DC;
(2)當AD是∠BAC的角平分線時,判斷AB、BD、AC的數(shù)量關系,并證明你的結論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx-3a經(jīng)過A(-1,0),C(0,-3)兩點,與x軸交于另一點B.
(1)求此拋物線的表達式;
(2)已知點D(m,-m-1)在第四象限的拋物線上,求點D關于直線BC對稱的點D′的坐標;
(3)在(2)的條件下,連接BD.問在x軸上是否存在點P,使∠PCB=∠CBD?若存在,請求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,經(jīng)過原點O的拋物線與x軸交于另一點,在第一象限內(nèi)與直線交于點.
求這條拋物線的表達式;
在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;
如圖2,若點M在這條拋物線上,且,
求點M的坐標;
在的條件下,是否存在點P,使得∽?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com