【題目】如圖,四邊形ABCD是一片水田,某村民小組需計算其面積,測得如下數(shù)據(jù):∠A=90°,∠ABD=60°,∠CBD=54°,AB=200 m,BC=300 m.請你計算出這片水田的面積.(參考數(shù)據(jù):sin 54°≈0.809,cos 54°≈0.588,tan 54°≈1.376,=1.732)

【答案】83180

【解析】CM⊥BDM,由含30°角的直角三角形的性質求出BD,由勾股定理求出AD,求出△ABD的面積,再由三角函數(shù)求出CM,求出△BCD的面積,然后根據(jù)S四邊形ABCD=SABD+SBCD列式計算即可得解.

∵∠A=90°,∠ABD=60°,

∴∠ADB=30°,

∴BD=2AB=400 m,

∴AD=AB=200 m,

∴△ABD的面積=×200×200=20000m2.

∵∠CMB=90°,∠CBD=54°,

∴CM=BC·sin 54°=300×0.809=242.7m.

∴△BCD的面積=×400×242.7=48540m2.

這片水田的面積=20000+48 540≈83180m2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,E在線段AC上,DAB的延長線,連DEBCF,過點EEGBCG

1)若∠A50°,∠D30°,求∠GEF的度數(shù);

2)若BDCE,求證:FGBF+CG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場新進一批A、B兩種型號的節(jié)能防近視臺燈,每臺進價分別為200元、170元,近兩周的銷售情況如下:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1800

第二周

4

10

3100

進價、售價均保持不變,利潤銷售收入進貨成本

A、B兩種型號的臺燈的銷售單價;

若該商場準備用不多于5400元的金額再購進這兩種型號的臺燈共30臺,求A種型號的臺燈最多能購進多少臺?

的條件下,能否求出該商場銷售完這30臺臺燈所獲得的最大利潤若能,求出最大利潤;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程mx2-2x+1=0.

(1)若方程有兩個實數(shù)根,求m的取值范圍;

(2)若方程的兩個實數(shù)根為x1,x2,且x1x2-x1-x2,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,6),點C的坐標為(﹣2,0),且tanACO=2.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形紙片ABCD折疊,使點D與點B重合,點C落在M處,若∠EFM125°,則∠ABE____________度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:在△ABC中,∠B=2C,點D為線段BC上一動點,當AD滿足某種條件時,探討在線段AB、BDCD、AC四條線段中,某兩條或某三條線段之間存在的數(shù)量關系.

例如:在圖1中,當AB=AD時,可證得AB=DC,現(xiàn)在繼續(xù)探索:

任務要求:

1)當ADBC時,如圖2,求證:AB+BD=DC;

2)當AD是∠BAC的角平分線時,判斷AB、BD、AC的數(shù)量關系,并證明你的結論。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx-3a經(jīng)過A(-1,0),C(0,-3)兩點,與x軸交于另一點B.

(1)求此拋物線的表達式;

(2)已知點D(m,-m-1)在第四象限的拋物線上,求點D關于直線BC對稱的點D′的坐標;

(3)在(2)的條件下,連接BD.問在x軸上是否存在點P,使∠PCB=∠CBD?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,經(jīng)過原點O的拋物線x軸交于另一點,在第一象限內(nèi)與直線交于點

求這條拋物線的表達式;

在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;

如圖2,若點M在這條拋物線上,且

求點M的坐標;

的條件下,是否存在點P,使得?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案