【題目】已知O為直線AB上的一點,COE是直角,OF平分AOE(圖中所說的角都是小于平角的角).
(1)如圖1,若COF58°,求BOE的度數(shù);
(2)將COE繞點O順時針旋轉(zhuǎn)到如圖2所示的位置時,若COFm°,求BOE的度數(shù)(用含字母m的代數(shù)式表示).
【答案】(1)116°;(2)360°﹣2m°.
【解析】
(1)根據(jù)互余得到∠EOF的度數(shù),再由OF平分∠AOE,得到∠AOE=2∠EOF,然后根據(jù)鄰補角的定義得到∠BOE的度數(shù);
(2)當(dāng)∠COF=m°,根據(jù)互余得到∠EOF=m°﹣90°,再由OF平分∠AOE,得到∠AOE=2∠EOF=2m°﹣180°,然后根據(jù)鄰補角的定義得到∠BOE的度數(shù),即可得到結(jié)論.
(1)∵∠COE是直角,∠COF=58°,∴∠EOF=90°﹣58°=32°.
∵OF平分∠AOE,∴∠AOE=2∠EOF=64°,∴∠BOE=180°﹣64°=116°.
故答案為:116°;
(2)∵∠COF=m°,∴∠EOF=m°﹣90°.
又∵OF平分∠AOE,∴∠AOE=2∠EOF=2m°﹣180°,∴∠BOE=180°﹣(2m°﹣180°)=360°﹣2m°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝建軍90周年,某校計劃在五月份舉行“唱響軍歌”歌詠比賽,要確定一首喜歡人數(shù)最多的歌曲為每班必唱歌曲.為此提供代號為A,B,C,D四首備選曲目讓學(xué)生選擇,經(jīng)過抽樣調(diào)查,并將采集的數(shù)據(jù)繪制如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖①,圖②所提供的信息,
解答下列問題:
(1)本次抽樣調(diào)查中,選擇曲目代號為A的學(xué)生占抽樣總數(shù)的百分比為 ;
(2)請將圖②補充完整;
(3)若該校共有1260名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果估計全校共有多少學(xué)生選擇喜歡人數(shù)最多的歌曲?(要有解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在數(shù)軸上A,B兩點對應(yīng)的數(shù)分別是6,-6, (C與O重合,D點在數(shù)軸的正半軸上)
(1)如圖1,若CF 平分,則_________;
(2)如圖2,將沿數(shù)軸的正半軸向右平移t(0<t<3)個單位后,再繞點頂點逆時針旋轉(zhuǎn)30t度,作平分,此時記.
①當(dāng)t=1時, _______;
②猜想和的數(shù)量關(guān)系,并證明;
(3)如圖3,開始與重合,將沿數(shù)軸的正半軸向右平移t(0<t<3)個單位,再繞點頂點逆時針旋轉(zhuǎn)30t度,作平分,此時記,與此同時,將沿數(shù)軸的負半軸向左平移t(0<t<3)個單位,再繞點頂點順時針旋轉(zhuǎn)30t度,作平分,記,若與滿足,請直接寫出t的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年元旦期間,某商場打出促銷廣告,如表所示.
優(yōu)惠 條件 | 一次性購物不超過200元 | 一次性購物超過200元,但不超過500元 | 一次性購物超過500元 |
優(yōu)惠 辦法 | 沒有優(yōu)惠 | 全部按九折優(yōu)惠 | 其中500元仍按九折優(yōu)惠,超過500元部分按八折優(yōu)惠 |
小欣媽媽兩次購物分別用了134元和490元.
(1)小欣媽媽這兩次購物時,所購物品的原價分別為多少?
(2)若小欣媽媽將兩次購買的物品一次全部買清,則她是更節(jié)省還是更浪費?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.點C,B 是線段 AD 上的兩點, AC : CB : BD 3 :1: 4 ,點 E , F 分別是 AB,CD 的中點,且 EF 14 ,求 AB,CD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,∠ABC的平分線交CD于點F,交AD的延長線于點H,AG與BH交于點O,連接BE,下列結(jié)論錯誤的是( 。
A. BO=OH B. DF=CE C. DH=CG D. AB=AE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達式;
(2)在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標;
(3)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電子跳蚤游戲盤是如圖所示的△ABC,AB=AC=BC=5.如果跳蚤開始時在BC邊的P0處,BP0=2.跳蚤第一步從P0跳到AC邊的P1(第1次落點)處,且CP1= CP0;第二步從P1跳到AB邊的P2(第2次落點)處,且AP2= AP1;第三步從P2跳到BC邊的P3(第3次落點)處,且BP3= BP2;…;跳蚤按照上述規(guī)則一直跳下去,第n次落點為Pn(n為正整數(shù)),則點P2016與點P2017之間的距離為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-2x+2的圖象與軸、軸分別交于點、,以線段為直角邊在第一象限內(nèi)作等腰直角三角形ABC,且,則點C坐標為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com