如圖,已知反比例函數(shù)y=過點P, P點的坐標(biāo)為(3-m,2m),m是分式方程的解,PA⊥x軸于點A,PB⊥y軸于點B.

(1)試判斷四邊形PAOB的形狀,并說明理由.

(2)連結(jié)AB,E為AB上的一點,EF⊥BP于點F,G為AE的中點,連結(jié)OG、FG,試問FG和OG有何數(shù)量關(guān)系?請寫出你的結(jié)論并證明.

(3)若M為反比例函數(shù)y=在第三象限內(nèi)的一動點,過M作MN⊥x軸于交AB的延長線于點N,是否存在一點M使得四邊形OMNB為等腰梯形?若存在,請求出M點的坐標(biāo);若不存在,請說明理由.

 

【答案】

解:(1)四邊形PAOB是正方形.理由如下

   ∵∠AOB=∠OBP=∠OAP=90°

   ∴四邊形PAOB是矩形                                        

   m-3+m-2=-3

     解得:m=1

   經(jīng)檢驗知m=1是原分式方程的解

   ∴P(2,2)                               

   ∴PB=PA=2

   ∴四邊形PAOB是正方形. 

(2)OG=FG.證明如下:

   延長FE交OA于點H,連結(jié)GH

∵∠HFB =∠FBO=∠BOH=90°

∴BOHF是矩形

∴BF=OH

∵∠FBE=∠FEB=45°

∴EF= BF=OH                 

  ∵∠EHA=90°,G為AE的中點

∴GH=GE=GA                                   

∴∠GEH=∠GAH=45°

  ∴∠GEF=∠GHO                       

  ∴△GEF≌△GHO

  ∴OG=FG                                        

(3)由題意知:∠BNM=45°             

∵要讓四邊形OBNM為等腰梯形

∴∠BNM=∠NMO=45°                                                

∴設(shè)M點的坐標(biāo)為(x,x),代入

∴x=±2

∵M(jìn)是第三象限上一動點

∴x=-2

∴M點的坐標(biāo)為(-2,-2)                                 

【解析】(1)解出分式方程得到m的值,進(jìn)而可判斷出四邊形PAOB的形狀;

(2)應(yīng)猜想相等,找這兩條線段所在三角形全等的條件;

(3)易知∠BNM=45°,要想為等腰梯形,∠OMN=45°,那么點M的橫縱坐標(biāo)相等.代入反比例函數(shù)即可.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
m
x
圖象與一次函數(shù)y=kx+b的圖象均經(jīng)過A(-1,4)和B(a,
4
5
)兩點,
(1)求B點的坐標(biāo)及兩個函數(shù)的解析式;
(2)若一次函數(shù)y=kx+b的圖象與x軸交于點C,求C點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
(k>0)的圖象經(jīng)過點A(2,m),過點A作AB⊥x軸于點B,且S△AOB=3.若一次函數(shù)y=ax+1的圖象經(jīng)過點A,并且與x軸相交于點C,求AO:AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點.
(1)求這兩個函數(shù)的解析式;
(2)求△MON的面積;
(3)請判斷點P(4,1)是否在這個反比例函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+b的圖象相交于點A和點D,且點A的橫坐標(biāo)為1,點D的縱坐標(biāo)為-1.過點A作AB⊥x軸于點B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)y2=ax+b的圖象與x軸相交于點C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫出:當(dāng)y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過第二象限內(nèi)的點A(-1,m),AB⊥x軸于點B,△AOB的面積為2.若直線y=ax+b經(jīng)過點A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設(shè)直線y=ax+b與x軸交于點M,求AM的長;
(3)在雙曲線上是否存在點P,使得△MBP的面積為8?若存在請求P點坐標(biāo);若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案