【題目】如圖,直線y=﹣x+n交x軸于點A,交y軸于點C(0,4),拋物線y=x2+bx+c經(jīng)過點A,交y軸于點B(0,﹣2).點P為拋物線上一個動點,過點P作x軸的垂線PD,過點B作BD⊥PD于點D,連接PB,設點P的橫坐標為m.
(1)求拋物線的解析式;
(2)當△BDP為等腰直角三角形時,求線段PD的長.
【答案】(1)y=x2﹣x﹣2;(2)PD=.
【解析】
(1)由點C坐標,得直線方程為:y=-x+n=-x+4,從而求出點A坐標,把點A、B坐標代入二次函數(shù)表達式即可求解;
(2)設點P(m,m2-m-2),當△BDP為等腰直角三角形時,BD=PD,即可求解.
(1)由點C坐標,得直線方程為:y=﹣x+n=﹣x+4,
令y=0,解得:x=3,則點A(3,0),
把點A、B坐標代入二次函數(shù)表達式,
解得:b=﹣,c=﹣2,
則函數(shù)表達式為:y=x2﹣x﹣2;
(2)設點P(m,m2﹣m﹣2),
點B(0,﹣2),則點D(m,﹣2),
當△BDP為等腰直角三角形時,BD=PD,
即: m2﹣m﹣2﹣(﹣2)=m,
解得:m=,(m=0舍去),
PD=BD=m=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△A′B′C是兩個完全重合的直角三角板,∠B=30°,斜邊長為10cm.三角板A′B′C繞直角頂點C順時針旋轉,當點A′落在AB邊上時,CA′旋轉所構成的扇形的弧長為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學活動課中,同學們準備了一些等腰直角三角形紙片,從每張紙片中剪出一個扇形制作圓錐玩具模型.如圖,已知△ABC是腰長為16cm的等腰直角三角形.
(1)在等腰直角三角形ABC紙片中,以C為圓心,剪出一個面積最大的扇形(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)請求出所制作圓錐底面的半徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結論:
①b2﹣4ac>0;
②4a﹣2b+c<0;
③3b+2c<0;
④m(am+b)<a﹣b(m≠﹣1),
其中正確結論的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是AB延長線上一點,CD與⊙O相切于點E,AD⊥CD于點D.
(1)求證:AE平分∠DAC;
(2)若AB=4,∠ABE=60°.
①求AD的長;
②求出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在⊙O中,,弦CD與弦AB交于點F,連接BC,若∠ACD=60°,⊙O的半徑長為2cm.
(1)求∠B的度數(shù)及圓心O到弦AC的距離;
(2)求圖中陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的頂點為C,對稱軸為直線,且經(jīng)過點A(3,-1),與y軸交于點B.
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,并說明理由;
(3)經(jīng)過點A的直線交拋物線于點P,交x軸于點Q,若,試求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時)與所用時間t(小時)的函數(shù)關系如圖所示,其中60≤v≤120.
(1)直接寫出v與t的函數(shù)關系式;
(2)若一輛貨車同時從乙地出發(fā)前往甲地,客車比貨車平均每小時多行駛20千米,3小時后兩車相遇.
①求兩車的平均速度;
②甲、乙兩地間有兩個加油站A、B,它們相距200千米,當客車進入B加油站時,貨車恰好進入A加油站(兩車加油的時間忽略不計),求甲地與B加油站的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com