【題目】已知一個三角形紙片ABC,面積為25,BC的長為10,∠B、∠C都為銳角,MAB邊上的一動點(MA、B不重合),過點MMNBCAC于點N,設MN=x
1)用x表示△AMN的面積;
2)△AMN沿MN折疊,使△AMN緊貼四邊形BCNM(邊AMAN落在四邊形BCNM所在的平面內(nèi)),設點A落在平面BCNM內(nèi)的點A′,△AMN與四邊形BCNM重疊部分的面積為y
①用含x的代數(shù)式表示y,并寫出x的取值范圍.
②當x為何值時,重疊部分的面積y最大,最大為多少?

【答案】1SAMN= ;(2)①-x2+10x-255x10),②當x=時,y最大,最大值為y最大=


【解析】

(1)本題需先根據(jù)已知條件求出△AMN∽△ABC,再根據(jù)面積比等于相似比的平方的性質即可求出△AMN的面積.
(2)本題需先根據(jù)已知條件分兩種情況進行討論,當點A′落在四邊形BCMN內(nèi)或BC邊上時和當點A′在四邊形BCMN外時進行討論,第一種情況很容易求出,第二種情況進行畫圖,連接AA′與MN交于點G與BC交于點F,再根據(jù)面積比等于相似比的平方的性質求出即可.再根據(jù)求出的式子,即可求出重疊部分的面積y的最大值來.

(1)∵MN∥BC,
∴△AMN∽△ABC,
,
,
∴SAMN=
(2)①當點A′落在四邊形BCMN內(nèi)或BC邊上時,0<x≤5,


△A′MN與四邊形BCNM重疊部分的面積為就是△A′MN的面積,
則此時y=SAMN=SAMN=x2(0<x≤5)
當點A′落在四邊形BCMN外時,5<x<10,
△A′MN與四邊形BCNM重疊部分的面積就是梯形MNED的面積,
連接AA′,與MN交于點G,與BC交于點F,
∵MN∥BC,
,
,


∴AG=x,
∴AA′=2AG=x,
∴A′F=x-5,

,
∴SADE=x2-10x+25,
∴此時y=x2-(x2-10x+25),
=-x2+10x-25(5<x<10),
②由①知:y=-x2+10x25
∵a=-<0,
∴該函數(shù)圖象開口向下,當x=- ,
y取得最大值,ymax

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象交x軸于(-10)點,則下列結論中正確的是(

A.c0B.a-b+c<0C.b2<4acD.2a+b=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸于A、B兩點,直線y=kx+b經(jīng)過點A,與這條拋物線的對稱軸交于點M1,2),且點M與拋物線的頂點N關于x軸對稱.

1)求拋物線的函數(shù)關系式;

2)設題中的拋物線與直線的另一交點為C,已知Px,y)為線段AC上一點,過點PPQx軸,交拋物線于點Q.求線段PQ的最大值及此時P坐標;

3)在(2)的條件下,求AQC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點ABC(頂點是網(wǎng)格線的交點)和點A1

1)將ABC繞點A順時針旋轉90°,畫出相應的AB1C1;

2)將AB1C1沿射線AA1平移到A1B2C2處,畫出A1B2C2;

3)點C在兩次變換過程中所經(jīng)過的路徑長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是邊ABCD上的點,AE=CF,連接EFBF,EF與對角線AC交于O點,且BE=BF,∠BEF=2∠BAC

1)求證:OE=OF;

2)若BC=,求AB的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線l與直線,直線分別交于點A,B,直線與直線交于點

1)求直線軸的交點坐標;

2)橫、縱坐標都是整數(shù)的點叫做整點.記線段圍成的區(qū)域(不含邊界)為

時,結合函數(shù)圖象,求區(qū)域內(nèi)的整點個數(shù);

若區(qū)域內(nèi)沒有整點,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2-4x-3,下列說法中正確的是(

A.該函數(shù)圖象的開口向下B.該函數(shù)圖象的頂點坐標是(-2,-7)

C.x<0時,yx的增大而增大D.該函數(shù)圖象與x軸有兩個不同的交點,且分布在坐標原點兩側

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=(x+m2+k的圖象,其頂點坐標為M1,﹣4).

1)求出圖象與x軸的交點AB的坐標;

2)在y軸上存在一點Q,使得△QMB周長最小,求出Q點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于、兩點,與軸交于點,且

(1)求拋物線的解析式和頂點的坐標;

(2)判斷的形狀,證明你的結論;

(3)點軸上的一個動點,當的周長最小時,求的值.

查看答案和解析>>

同步練習冊答案