【題目】如圖,拋物線的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左邊)與軸交于點(diǎn),拋物線的頂點(diǎn)為.
(1)求點(diǎn)的坐標(biāo);
(2)點(diǎn)為線段上一點(diǎn)(點(diǎn)不與點(diǎn)重合),過(guò)點(diǎn)作軸的垂線,與直線交于點(diǎn),與拋物線交于點(diǎn),過(guò)點(diǎn)作交拋物線于點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),可得矩形.如圖,點(diǎn)在點(diǎn)左邊,當(dāng)矩形的周長(zhǎng)最大時(shí),求此時(shí)的的面積;
(3)在(2)的條件下,當(dāng)矩形的周長(zhǎng)最大時(shí),連接,過(guò)拋物線上一點(diǎn)作軸的平行線,與直線交于點(diǎn)(點(diǎn)在點(diǎn)的上方)若,求點(diǎn)的坐標(biāo).
【答案】(1), ,;(2);(3)或.
【解析】
(1)令,可求出A、B兩點(diǎn)坐標(biāo),令x=0,可求出點(diǎn)C的坐標(biāo);(2)求矩形的面積函數(shù)解析式,通過(guò)頂點(diǎn)坐標(biāo)求出m,再求直線的解析式,求出,,故;(3)證與原點(diǎn)重合,點(diǎn)與點(diǎn)重合,故,把代入,解得,,,;設(shè),則,得.解得或,可得F坐標(biāo).
由拋物線可知,.
令,則,
解得,或,,
(2)由拋物線可知,對(duì)稱軸為.
,P(m,),N(-2-m,0)
,,
矩形的周長(zhǎng)
,
矩形的周長(zhǎng)最大時(shí),.
,設(shè)直線的解析式,
解得,,解析式,令,則,
,,,
.
(3),拋物線的對(duì)稱軸為,
應(yīng)與原點(diǎn)重合,點(diǎn)與點(diǎn)重合,
,把代入,解得,
,.
,
設(shè),則,點(diǎn)在點(diǎn)的上方且,
.解得或,
或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l經(jīng)過(guò)A(6,0)和B(0,12)兩點(diǎn),且與直線y=x交于點(diǎn)C,點(diǎn)P(m,0)在x軸上運(yùn)動(dòng).
(1)求直線l的解析式;
(2)過(guò)點(diǎn)P作l的平行線交直線y=x于點(diǎn)D,當(dāng)m=3時(shí),求△PCD的面積;
(3)是否存在點(diǎn)P,使得△PCA成為等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)(k>0)的圖像交于A,B兩點(diǎn),過(guò)點(diǎn)A做x軸的垂線,垂足為M,△AOM面積為1.
(1)求反比例函數(shù)的解析式;
(2)在y軸上求一點(diǎn)P,使PA+PB的值最小,并求出其最小值和P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△OAB中,OA=AB,∠OAB=90°,點(diǎn)P從點(diǎn)O沿邊OA、AB勻速運(yùn)動(dòng)到點(diǎn)B,過(guò)點(diǎn)P作PC⊥OB交OB于點(diǎn)C,線段AB=2,OC=x,S△POC=y,則能夠反映y與x之間函數(shù)關(guān)系的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖①,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是BC的中點(diǎn),以點(diǎn)D為頂點(diǎn)作正方形DFGE,使點(diǎn)A、C分別在DE和DF上,連接BE、AF.則線段BE和AF數(shù)量關(guān)系_____.
(2)類比探究:如圖②,保持△ABC固定不動(dòng),將正方形DFGE繞點(diǎn)D旋轉(zhuǎn)α(0°<α≤360°),則(1)中的結(jié)論是否成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
(3)解決問(wèn)題:若BC=DF=2,在(2)的旋轉(zhuǎn)過(guò)程中,連接AE,請(qǐng)直接寫(xiě)出AE的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖像與坐標(biāo)軸交于點(diǎn)A(1, 0)和點(diǎn)C.經(jīng)過(guò)點(diǎn)A的直線與二次函數(shù)圖像交于另一點(diǎn)B,點(diǎn)B與點(diǎn)C關(guān)于二次函數(shù)圖像的對(duì)稱軸對(duì)稱.
(1)求一次函數(shù)表達(dá)式;
(2)點(diǎn)P在二次函數(shù)圖像的對(duì)稱軸上,當(dāng)△ACP的周長(zhǎng)最小時(shí),請(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再?gòu)囊易烂嫔先我饷鲆粡埣t心.
(1)表示出所有可能出現(xiàn)的結(jié)果;
(2)小黃和小石做游戲,制定了兩個(gè)游戲規(guī)則:
規(guī)則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.
規(guī)則2:若摸出的紅心牌點(diǎn)數(shù)是黑桃牌點(diǎn)數(shù)的整數(shù)倍時(shí),小黃贏;否則,小石贏.
小黃想要在游戲中獲勝,會(huì)選擇哪一條規(guī)則,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O直徑,C、D為⊙O上的點(diǎn),∠ACD=2∠A,CE⊥DB交DB的延長(zhǎng)線于點(diǎn)E.
(1)求證:直線CE與⊙O相切;
(2)若AC=8,AB=10,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P做x軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.
(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;
(2)已知點(diǎn)F(0,),當(dāng)點(diǎn)P在x軸上運(yùn)動(dòng)時(shí),試求m為何值時(shí),四邊形DMQF是平行四邊形?
(3)點(diǎn)P在線段AB運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)Q,使得以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com