如圖,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一點O為圓心的圓經(jīng)過A、D兩點,且∠AOD=90°,則圓心O到弦AD的距離是cm.
解:如圖,作AE⊥CD,垂足為E,OF⊥AD,垂足為F,
則四邊形AECB是矩形,
CE=AB=2cm,DE=CD﹣CE=4﹣2=2cm,
∵∠AOD=90°,AO=OD,
所以△AOD是等腰直角三角形,
AO=OD,∠OAD=∠ADO=45°,BO=CD,
∵AB∥CD,
∴∠BAD+∠ADC=180°
∴∠ODC+∠OAB=90°,
∵∠ODC+∠DOC=90°,
∴∠DOC=∠BAO,
∵∠B=∠C=90°
∴△ABO≌△OCD,
∴OC=AB=2cm,OB=CD=4cm,BC=BO+OC=AE=6cm,
由勾股定理知,AD2=AE2+DE2,
得AD=2cm,
∴AO=OD=2cm,
S△AOD=AO•DO=AD•OF,
∴OF=cm.
科目:初中數(shù)學(xué) 來源: 題型:
用配方法解方程x2﹣2x﹣5=0時,變形正確的是( )
A.(x﹣2)2=9 B.(x﹣1)2=6 C.(x+2)2=9 D.(x+1)2=6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將△ABC沿射線BC方向平移得到△DEF,邊DE與AC相交于點G,如果BC=3cm,△ABC的面積為9cm2,△EGC的面積等于4cm2,那么BE= cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列說法中,正確的是( )
A.同一條弦所對的兩條弧一定是等弧
B.長度相等的兩條弧是等弧
C.兩條直線被一組平行線所截,所得的對應(yīng)線段成比例
D.三角形的外心到三角形各邊的距離相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖,△ABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC于點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結(jié)AD.
(1)求證:∠DAC=∠DBA;
(2)求證:P是線段AF的中點;
(3)連接CD,若CD﹦3,BD﹦4,求⊙O的半徑和DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一個不透明的袋子中裝有4個大小、質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字﹣3、2、5、﹣6,攪勻后,先從中摸出1個球(不放回),再從余下的三個球中摸出一個球.
(1)用樹狀圖列出所有可能出現(xiàn)的結(jié)果;
(2)求兩次摸出的乒乓球球面上的數(shù)字的積為偶數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com