(2011•玉溪一模)如圖,反比例函數(shù)的圖象過矩形OABC的頂點B,OA、0C分別在x軸、y軸的正半軸上,OA:0C=2:1.
(1)設(shè)矩形OABC的對角線交于點E,求出E點的坐標(biāo);
(2)若直線y=2x+m平分矩形OABC面積,求m的值.

【答案】分析:(1)首先由OA:0C=2:1,設(shè)OA=2a,OC=a.再根據(jù)雙曲線的解析式求得點B的坐標(biāo),再根據(jù)矩形的對角線相等且互相平分,結(jié)合平行線等分線段定理,得點E的橫、縱坐標(biāo)分別是矩形的長和寬的一半;
(2)根據(jù)矩形是中心對稱圖形,則要平分矩形的面積,該直線一定經(jīng)過點E.只需把點E的坐標(biāo)代入進(jìn)行計算.
解答:解:(1)由題意,設(shè)B(2a,a)(a≠0),

∴a=±2.
∵B在第一象限,
∴a=2.B(4,2)(2分)
∴矩形OABC對角線的交點E為(2,1);(3分)

(2)①當(dāng)m≠0時,
∵直線y=2x+m平分矩形OABC必過點(2,1)
∴1=4+m,
∴m=-3.
②當(dāng)m=0時,y=2x必過點(1,2);
∴m=-3或0
點評:注意:只要過中心對稱圖形的對稱中心任意畫一條直線,則一定能夠把它的面積分成相等的兩部分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•玉溪一模)二次根式
1-a
中,a的取值范圍是
a≤1
a≤1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省無錫市天一實驗學(xué)校中考數(shù)學(xué)三模試卷(解析版) 題型:解答題

(2011•玉溪一模)點P為拋物線y=x2-2mx+m2(m為常數(shù),m>0)上任一點,將拋物線繞頂點G逆時針旋轉(zhuǎn)90°后得到的新圖象與y軸交于A、B兩點(點A在點B的上方),點Q為點P旋轉(zhuǎn)后的對應(yīng)點.
(1)當(dāng)m=2,點P橫坐標(biāo)為4時,求Q點的坐標(biāo);
(2)設(shè)點Q(a,b),用含m、b的代數(shù)式表示a;
(3)如圖,點Q在第一象限內(nèi),點D在x軸的正半軸上,點C為OD的中點,QO平分∠AQC,AQ=2QC,當(dāng)QD=m時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省常州市九年級教學(xué)質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

(2011•玉溪一模)有六個學(xué)生分成甲、乙兩組(每組三個人),分乘兩輛出租車同時從學(xué)校出發(fā)去距學(xué)校60km的博物館參觀,10分鐘后到達(dá)距離學(xué)校12km處有一輛汽車出現(xiàn)故障,接著正常行駛的一輛車先把第一批學(xué)生送到博物館再回頭接第二批學(xué)生,同時第二批學(xué)生步行12km后停下休息10分鐘恰好與回頭接他們的小汽車相遇,當(dāng)?shù)诙鷮W(xué)生到達(dá)博物館時,恰好已到原計劃時間、設(shè)汽車載人和空載時的速度不變,學(xué)生步行速度不變,汽車離開學(xué)校的路程s(千米)與汽車行駛時間t(分鐘)之間的函數(shù)關(guān)系如圖,假設(shè)學(xué)生上下車時間忽略不計,
(1)原計劃從學(xué)校出發(fā)到達(dá)博物館的時間是______分鐘;
(2)求汽車在回頭接第二批學(xué)生途中的速度;
(3)假設(shè)學(xué)生在步行途中不休息且步行速度每分鐘減小0.04km,汽車載人時和空載時速度不變,問能否經(jīng)過合理的安排,使得學(xué)生從學(xué)校出發(fā)全部到達(dá)目的地的時間比原計劃時間早10分鐘?如果能,請簡要說出方案,并通過計算說明;如果不能,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市海淀區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2011•玉溪一模)點P為拋物線y=x2-2mx+m2(m為常數(shù),m>0)上任一點,將拋物線繞頂點G逆時針旋轉(zhuǎn)90°后得到的新圖象與y軸交于A、B兩點(點A在點B的上方),點Q為點P旋轉(zhuǎn)后的對應(yīng)點.
(1)當(dāng)m=2,點P橫坐標(biāo)為4時,求Q點的坐標(biāo);
(2)設(shè)點Q(a,b),用含m、b的代數(shù)式表示a;
(3)如圖,點Q在第一象限內(nèi),點D在x軸的正半軸上,點C為OD的中點,QO平分∠AQC,AQ=2QC,當(dāng)QD=m時,求m的值.

查看答案和解析>>

同步練習(xí)冊答案