【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+2x+cy軸交于點(diǎn)A,與x軸交于點(diǎn)B3,0)、C(﹣1,0)兩點(diǎn).

1)求直線AB和拋物線的表達(dá)式;

2)當(dāng)點(diǎn)F為直線AB上方拋物線上一動(dòng)點(diǎn)(不與A、B重合),過點(diǎn)FFP//x軸交直線AB于點(diǎn)P;過點(diǎn)FFR//y軸交直線AB于點(diǎn)R,求PR的最大值;

3)把射線BA繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到射線BM,點(diǎn)E在射線BM運(yùn)動(dòng)(不與點(diǎn)B重合),以BC、BE為鄰邊作平行四邊形BCDE,點(diǎn)HDE邊上動(dòng)點(diǎn),連接CH,請(qǐng)直接寫出CH+HE的最小值.

【答案】1)拋物線的解析式為y=﹣x2+2x+3,直線AB的解析式為y=﹣x+3;(2PR有最大值為;(3)最小值為2

【解析】

1)將點(diǎn)B,C坐標(biāo)代入拋物線解析式中,即可求出a,c,進(jìn)而求出點(diǎn)A的坐標(biāo),再用待定系數(shù)法求出直線AB的解析式;

2)先判斷出∠OBA=∠OAB45°,進(jìn)而判斷出∠FPR=∠FRP45°,得出∠PFR90°,PFFR,進(jìn)而得出PRFR,再設(shè)點(diǎn)Rt,﹣t+3),得出點(diǎn)Ft,﹣t2+2t+3),進(jìn)而得出PRFR=﹣t2+,即可得出結(jié)論;

3)過點(diǎn)CCGBMG,交DE于點(diǎn)H,先判斷出∠DEG=∠CBE45°,進(jìn)而判斷出HGHE,根據(jù)垂線段最短和銳角三角函數(shù)即可得出結(jié)論.

解:(1)∵拋物線yax2+2x+c經(jīng)過點(diǎn)B3,0)、C(﹣1,0),

,

,

∴拋物線的解析式為y=﹣x2+2x+3,

x0,則y3,

A0,3),

∴設(shè)直線AB的解析式為ykx+bk0),

∵直線AB經(jīng)過點(diǎn)A0,3)、B3,0),

,

,

∴直線AB的解析式為y=﹣x+3;

2)∵A0,3),B3,0),

OAOB3,

∵∠AOB90°,

∴∠OBA=∠OAB45°,

FP//x軸,FR//y軸,

∴∠FPR=∠OBA45°,∠FRP=∠OAB45°,

∴∠FPR=∠FRP45°,

∴∠PFR90°,PFFR,

根據(jù)勾股定理得,PRFR,

∵點(diǎn)R在直線AB上,

∴設(shè)點(diǎn)Rt,﹣t+3),

FR//y軸,

∴點(diǎn)F的橫坐標(biāo)為t,

∵點(diǎn)F在拋物線y=﹣x2+2x+3上,

∴點(diǎn)Ft,﹣t2+2t+3),

PRFR [(﹣t2+2t+3)﹣(﹣t+3]=﹣t2+,

a=﹣0,拋物線的開口向下,二次函數(shù)有最大值,

當(dāng)t時(shí),PR有最大值,PR的最大值為;

3)如圖,過點(diǎn)CCGBMG,交DE于點(diǎn)H

∵把射線BA繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到射線BM,

∴∠ABM90°,

∵∠OBA45°,

∴∠CBE=∠ABM﹣∠OBA45°,

DE//CB,

∴∠DEG=∠CBE45°,

RtHGE中,HGHEsin45°=HE,

根據(jù)垂線段最短得,(CH+HE最小CG,

CH+HECGCBsin45°=2,

CH+HE的最小值為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為培養(yǎng)學(xué)生良好學(xué)習(xí)習(xí)慣,某學(xué)校計(jì)劃舉行一次整理錯(cuò)題集的展示活動(dòng),對(duì)該校部分學(xué)生整理錯(cuò)題集的情況進(jìn)行了一次抽樣調(diào)查,根據(jù)收集的數(shù)據(jù)繪制了下面不完整的統(tǒng)計(jì)圖表.

整理情況

頻數(shù)

頻率

非常好

0.21

較好

70

0.35

一般

m

不好

36

請(qǐng)根據(jù)圖表中提供的信息,解答下列問題:

(1)本次抽樣共調(diào)查了   名學(xué)生;

(2)m=   ;

(3)該校有1500名學(xué)生,估計(jì)該校學(xué)生整理錯(cuò)題集情況非常好較好的學(xué)生一共約多少名?

(4)某學(xué)習(xí)小組4名學(xué)生的錯(cuò)題集中,有2非常好(記為A1、A2),1較好(記為B),1一般(記為C),這些錯(cuò)題集封面無姓名,而且形狀、大小、顏色等外表特征完全相同,從中抽取一本,不放回,從余下的3本錯(cuò)題集中再抽取一本,請(qǐng)用列表法畫樹形圖的方法求出兩次抽到的錯(cuò)題集都是非常好的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BEO的直徑,點(diǎn)A和點(diǎn)D是⊙O上的兩點(diǎn),過點(diǎn)A作⊙O的切線交BE延長(zhǎng)線于點(diǎn).

(1)若∠ADE=25°,求∠C的度數(shù);

(2)若AB=AC,CE=2,求⊙O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一連鎖店銷售某品牌商品,該商品的進(jìn)價(jià)是60元.因?yàn)槭切碌觊_業(yè),所以連鎖店決定當(dāng)月前10天進(jìn)行試營(yíng)業(yè)活動(dòng),活動(dòng)期間該商品的售價(jià)為每件80元,據(jù)調(diào)查研究發(fā)現(xiàn):當(dāng)天銷售件數(shù)(件)和時(shí)間第x(天)的關(guān)系式為(),已知第4天銷售件數(shù)是40件,第6天銷售件數(shù)是44件.活動(dòng)結(jié)束后,連鎖店重新制定該商品的銷售價(jià)格為每件100元,每天銷售的件數(shù)也發(fā)生變化:當(dāng)天銷售數(shù)量(件)與時(shí)間第x(天)的關(guān)系為:).

1)求關(guān)于x的函數(shù)關(guān)系式;

2)若某天的日毛利潤(rùn)是1120元,求x的值;

3)因?yàn)樵撨B鎖店是新店開業(yè),所以試營(yíng)業(yè)結(jié)束后,廠家給這個(gè)連鎖店相應(yīng)的優(yōu)惠政策:當(dāng)這個(gè)連鎖店日銷售量達(dá)到60件后(不含60),每多銷售1件產(chǎn)品,當(dāng)日銷售的所有商品進(jìn)價(jià)減少2元,設(shè)該店日銷售量超過60件的毛利潤(rùn)總額為W,請(qǐng)直接寫出W關(guān)于x的函數(shù)解析式,及自變量x的取值范圍:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為豐富學(xué)生的文體生活,某校計(jì)劃開設(shè)五門選修課程:聲樂、足球、舞蹈、書法、演講.要求每名學(xué)生必須選修且只能選修一門課程,為保證計(jì)劃的有效實(shí)施,學(xué)校隨機(jī)對(duì)部分學(xué)生進(jìn)行了一次調(diào)查,并將調(diào)查結(jié)果繪制成如圖不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問題.

1)本次接受問卷調(diào)查的學(xué)生有   名;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖中選修“演講”課程所對(duì)應(yīng)扇形的圓心角的度數(shù)為   ;

4)該校有800名學(xué)生,請(qǐng)你估計(jì)選修“足球”課程的學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著生活水平的日益提高,人們?cè)絹碓较矚g過節(jié),節(jié)日的儀式感日漸濃烈,某校舉行了“母親節(jié)暖心特別行動(dòng)”,從中隨機(jī)調(diào)查了部分同學(xué)的暖心行動(dòng),并將其分為A,B,C,D四種類型(分別對(duì)應(yīng)送服務(wù)、送鮮花、送紅包、送話語).現(xiàn)根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上不完整的統(tǒng)計(jì)圖提供的信息,解答下列問題:

1)該校共抽查了多少名同學(xué)的暖心行動(dòng)?

2)求出扇形統(tǒng)計(jì)圖中扇形B的圓心角度數(shù)?

3)若該校共有2400名同學(xué),請(qǐng)估計(jì)該校進(jìn)行送鮮花行動(dòng)的同學(xué)約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班50名學(xué)生參加“迎國(guó)慶,手工編織‘中國(guó)結(jié)’”活動(dòng),要求每人編織47枚,活動(dòng)結(jié)束后隨機(jī)抽查了20名學(xué)生每人的編織量,并將各類的人數(shù)繪制成扇形統(tǒng)計(jì)圖(如圖1)和條形統(tǒng)計(jì)圖(如圖2),

注:A代表4枚;B代表5枚;C代表6枚;D代表7枚.經(jīng)確認(rèn)扇形圖是正確的,而條形統(tǒng)計(jì)圖尚有一處錯(cuò)誤.

回答下列問題:

1)寫出條形圖中存在的錯(cuò)誤:   ;

2)寫出這20名學(xué)生每人編織中國(guó)結(jié)數(shù)量的眾數(shù)   、中位數(shù)   、平均數(shù)   ;

3)求這50名學(xué)生中編織‘中國(guó)結(jié)’個(gè)數(shù)不少于6的人數(shù);

4)若從這50名學(xué)生中隨機(jī)選取一名,求其編織中國(guó)結(jié)個(gè)數(shù)為C的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種健身產(chǎn)品在市場(chǎng)上很受歡迎,該公司每年的產(chǎn)量為6萬件,可在國(guó)內(nèi)和國(guó)外兩個(gè)市場(chǎng)全部銷售.若在國(guó)外銷售,平均每件產(chǎn)品的利潤(rùn)y1(元)與國(guó)外銷售量x(萬件)的函數(shù)關(guān)系式為y1=.若在國(guó)內(nèi)銷售,平均每件產(chǎn)品的利潤(rùn)為y2=84元.

1)求該公司每年在國(guó)內(nèi)和國(guó)外銷售的總利潤(rùn)w(萬元)與國(guó)外銷售量x(萬件)的函數(shù)關(guān)系式,并指出x的取值范圍;

2)該公司每年在國(guó)內(nèi)國(guó)外銷售量各為多少時(shí),可使公司每年的總利潤(rùn)最大?最大值是多少?

3)該公司計(jì)劃從國(guó)外銷售的每件產(chǎn)品中捐出2m1≤m≤4)元給希望工程,從國(guó)內(nèi)銷售的每件產(chǎn)品中捐出m元給希望工程,且國(guó)內(nèi)銷售不低于4萬件,若這時(shí)國(guó)內(nèi)國(guó)外銷售的總利潤(rùn)的最大值為520萬元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yx2+bx+c的圖象經(jīng)過坐標(biāo)原點(diǎn)O和點(diǎn)A(7,0),直線ABy軸于點(diǎn)B(0,﹣7),動(dòng)點(diǎn)C(x,y)在直線AB上,且1x7,過點(diǎn)Cx軸的垂線交拋物線于點(diǎn)D,則CD的最值情況是( )

A.有最小值9B.有最大值9C.有最小值8D.有最大值8

查看答案和解析>>

同步練習(xí)冊(cè)答案