【題目】如圖,在四邊形ABDE中,C是BD邊的中點.若AC平分BAEACE=90°,猜想線段AE、AB、DE的長度滿足的數(shù)量關(guān)系為并證明.

【答案】AE=AB+DE

【解析】

試題分析:在AE上取一點F,使AF=AB,即可得出ACB≌△ACF,就可以得出BC=FC,ACB=ACF,就可以得出CEF≌△CED.就可以得出結(jié)論.

解:AE=AB+DE;

理由:在AE上取一點F,使AF=AB.

AC平分BAE,

∴∠BAC=FAC

ACBACF中,

∴△ACB≌△ACF(SAS),

BC=FC,ACB=ACF

C是BD邊的中點.

BC=CD,

CF=CD

∵∠ACE=90°

∴∠ACB+DCE=90°,ACF+ECF=90°

∴∠ECF=ECD

CEFCED中,

,

∴△CEF≌△CED(SAS),

EF=ED

AE=AF+EF,

AE=AB+DE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次數(shù)學(xué)活動課上,張明用17個邊長為1的小正方形搭成了一個幾何體,然后他請王亮用其他同樣的小正方體在旁邊再搭一個幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個無縫隙的大長方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要 個小立方體,王亮所搭幾何體的表面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等腰直角三角形,A=90°,點P、Q分別是AB、AC上的一動點,且滿足BP=AQ,D是BC的中點.

(1)求證:PDQ是等腰直角三角形;

(2)當(dāng)點P運動到什么位置時,四邊形APDQ是正方形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 小明同學(xué)5次數(shù)學(xué)單元測試的平均成績是90分,中位數(shù)是91分,眾數(shù)是94分,則兩次最低成績之和是( )

A. 165分 B. 168分 C. 170分 D. 171分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為6cm的正方形ABCD折疊,使點D落在AB邊的中點E處,折痕為FH,點C落在Q處,EQ與BC交于點G,則EBG的周長是 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若□×3xy=3x2y,則□內(nèi)應(yīng)填的單項式是( )

A. xy B. 3xy C. x D. 3x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】82m×4n÷2m﹣n

(2)6m362m÷63m﹣2

(3)(a4a3÷a23

(4)(﹣10)2+(﹣10)0+10﹣2×(﹣102

(5)(x6y5+x5y4x4y3)÷x3y3

(6)x﹣(2x﹣y2)+(x﹣y2

(7)2﹣[x﹣(x﹣1)](x﹣1)

(8)5xy2﹣{2x2y﹣[3xy2﹣(xy2﹣2x2y)]÷(﹣xy)}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次水災(zāi)中,大約有2.5×105個人無家可歸,假如一頂帳篷占地100米2,可以放置40個床位,為了安置所有無家可歸的人,需要多少頂帳篷?這些帳篷大約要占多少地方?估計你的學(xué)校的操場可安置多少人?要安置這些人,大約需要多少個這樣的操場?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2的A處發(fā)出,把球看成點,其運行的高度與運行的水平距離滿足關(guān)系式已知球網(wǎng)與O點的水平距離為9,高度為243,球場的邊界距O點的水平距離為18

(1)當(dāng)=26時,求的關(guān)系式(不要求寫出自變量的取值范圍);

(2)當(dāng)=26時,球能否越過球網(wǎng)?球會不會出界?請說明理由;

(3)若球一定能越過球網(wǎng),又不出邊界,求二次函數(shù)中的取值范圍

查看答案和解析>>

同步練習(xí)冊答案