【題目】如圖,在矩形紙片ABCD中,AB=4,點(diǎn)G是BC邊上一點(diǎn),且BG=5(BG<CG). 將矩形紙片沿過點(diǎn)G的折痕GE折疊,使點(diǎn)B恰好落在AD邊上,折痕與矩形紙片ABCD的邊相交于點(diǎn)E,則折痕GE的長(zhǎng)為_______.
【答案】或
【解析】
分兩種情況討論:①當(dāng)點(diǎn)E在AB邊上時(shí),那么結(jié)合折疊的性質(zhì)及已知條件可得AH=BG=FG=5,GH=AB=4,進(jìn)而在Rt△FHG中運(yùn)用勾股定理易得FH=3,則AF =2;設(shè)EF=BE=x,列方程可求出EF,然后可求出EG;②當(dāng)點(diǎn)E在AD邊上時(shí),結(jié)合折疊的性質(zhì)可得BG=FG=5,HF=AB=EK=4,易得∠BGE=∠EGF,結(jié)合AD∥BC,進(jìn)而可得∠FEG=∠BGE=∠EGF,則BE=EF=FG=5,然后根據(jù)BK2=BE2-EK2可求得BK,至此再根據(jù)EG2=EK2+KG2=20解答即可.
解:
如圖①:當(dāng)點(diǎn)E在AB邊上時(shí),根據(jù)已知可得AH=BG=FG=5,GH=AB=4.
∵FG=5,GH=4,
∴FH=3,
∴AF=AH-FH=2.
設(shè)EF=BE=x,則AE=4-x,
∴(4-x)2+22=x2,
∴x=,
∴EF2+FG2=EG2,
∴()2+52=EG2,
∴EG=.
如圖②:當(dāng)點(diǎn)E在AD邊上時(shí),可得BG=FG=5,HF=AB=EK=4.
∵EG為折痕,
∴∠BGE=∠EGF.
∵AD∥BC,
∴∠FEG=∠BGE=∠EGF,
∴BE=EF=FG=5,
∴BK2=BE2-EK2,
∴BK=3,
∴KG=2,
∴EG2=EK2+KG2=20,
∴EG=.
綜上EG的長(zhǎng)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線交軸于點(diǎn),交軸于點(diǎn),直線交軸于點(diǎn),且.
求直線的解析式;
點(diǎn)在線段上,連接交軸于點(diǎn),過點(diǎn)作軸交直線于點(diǎn),設(shè)點(diǎn)的坐標(biāo)為,的面積為,求與的函數(shù)關(guān)系式(不要求寫自變量的取值范圍).
在的條件下,點(diǎn)是線段上一點(diǎn),連接,當(dāng)時(shí),且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子中裝有個(gè)小球,它們除了顏色不同外,其余都相同, 其中有 5 個(gè)白球,每次試驗(yàn)前,將盒子中的小球搖勻,隨機(jī)摸出一個(gè)球記下顏色后再放回盒中.下表是摸球試驗(yàn)的一組統(tǒng)計(jì)數(shù)據(jù):
摸球次數(shù)( n ) | 50 | 100 | 150 | 200 | 250 | 300 | 500 |
摸到白球次( m ) | 28 | 60 | 78 | 104 | 123 | 152 | 251 |
白球頻率( ) | 0.56 | 0.60 | 0.52 | 0.52 | 0.49 | 0.51 | 0.50 |
由上表可以推算出a大約是( )
A.10B.14C.16D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)的直線交軸正半軸于點(diǎn),將直線繞著點(diǎn)順時(shí)針旋轉(zhuǎn)后,分別與軸軸交于點(diǎn)、.
(1)若,求直線的函數(shù)關(guān)系式;
(2)連接,若的面積是5,求點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是以BC為直徑的⊙O上一點(diǎn),AD⊥BC于點(diǎn)D,過點(diǎn)B作⊙O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,G是AD的中點(diǎn),連接CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P,且FG=FB=3.
(1)求證:BF=EF;
(2)求tanP;
(3)求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為4,以B為原點(diǎn)建立如圖1平面直角坐標(biāo)系中,E是邊CD上的一個(gè)動(dòng)點(diǎn),F是線段AE上一點(diǎn),將線段EF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到EF'.
(1)如圖2,當(dāng)E是CD中點(diǎn),時(shí),求點(diǎn)F'的坐標(biāo).
(2)如圖1,若,且F',D,B在同一直線上時(shí),求DE的長(zhǎng).
(3)如圖3,將正邊形ABCD改為矩形,AD=4,AB=2,其他條件不變,若,且F',D,B在同一直線上時(shí),則DE的長(zhǎng)是_______.(請(qǐng)用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)如圖,AB是半圓O的直徑,CD⊥AB于點(diǎn)C,交半圓于點(diǎn)E, DF切半圓于點(diǎn)F。已知∠AEF=135°。
(1)求證:DF∥AB;
(2)若OC=CE,BF=,求DE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,熱氣球的探測(cè)器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為2,以點(diǎn)A為圓心,1為半徑作圓,E是⊙A上的任意一點(diǎn),將點(diǎn)E繞點(diǎn)D按逆時(shí)針方向旋轉(zhuǎn)90°得到點(diǎn)F,則線段AF的長(zhǎng)的最小值_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com