【題目】如圖,已知正方形ABCD的邊長為2,以點A為圓心,1為半徑作圓,E是⊙A上的任意一點,將點E繞點D按逆時針方向旋轉(zhuǎn)90°得到點F,則線段AF的長的最小值_____

【答案】21

【解析】

根據(jù)題意先證明△ADE≌△CDF,則CFAE1,根據(jù)三角形三邊關(guān)系得:AFACCF,可知:當(dāng)FAC上時,AF最小,所以由勾股定理可得AC的長,可求得AF的最小值.

解:如圖,連接FC,AC,AE

EDDF,

∴∠EDF=∠EDA+∠ADF90°,

∵四邊形ABCD是正方形,

ADCD,∠ADC90°,

∴∠ADF+∠CDF90°,

∴∠EDA=∠CDF,

在△ADE和△CDF

,

∴△ADE≌△CDFSAS),

CFAE1,

∵正方形ABCD的邊長為2,

AC2,

AFACCF,

AF21

AF的最小值是21;

故答案為:21

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=4,點GBC邊上一點,且BG=5(BG<CG). 將矩形紙片沿過點G的折痕GE折疊,使點B恰好落在AD邊上,折痕與矩形紙片ABCD的邊相交于點E,則折痕GE的長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和拋物線的交點是A(0,-3)B(5,9),已知拋物線的頂點D的橫坐標是2.

(1)求拋物線的解析式及頂點坐標;

(2)軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC6,BC8,⊙O為△ABC的內(nèi)切圓,點D是斜邊AB的中點,則tanODA=( 。

A. B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過點B作⊙O的切線交CD的延長線于點E,若BC=9,tan∠CDA=,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級舉行英語演講比賽,準備用1200元錢(全部用完)購買A,B兩種筆記本作為獎品,已知A,B兩種每本分別為12元和20元,設(shè)購入Ax本,By本.

1)求y關(guān)于x的函數(shù)表達式.

2)若購進A種的數(shù)量不少于B種的數(shù)量.

①求至少購進A種多少本?

②根據(jù)①的購買,發(fā)現(xiàn)B種太多,在費用不變的情況下把一部分B種調(diào)換成另一種C,調(diào)換后C種的數(shù)量多于B種的數(shù)量,已知C種每本8元,則調(diào)換后C種至少有______本(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內(nèi)切圓半徑為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點D,并與邊AC相交于另一點F.

(1)求證:BD是⊙O的切線.

(2)若AB=,E是半圓上一動點,連接AE,AD,DE.

填空:

①當(dāng)的長度是____________時,四邊形ABDE是菱形;

②當(dāng)的長度是____________時,△ADE是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,∠A=90°

1)請用圓規(guī)和直尺作出⊙P,使圓心PAC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明);

2)在(1)的條件下,若∠B=45°,AB=1,PBC于點D,求劣弧的長.

查看答案和解析>>

同步練習(xí)冊答案