【題目】如圖,已知拋物線y=(x+2)(x﹣4)(k為常數(shù),且k>0)與x軸從左至右依次交于A,B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線y=﹣x+b與拋物線的另一交點(diǎn)為D.

(1)若點(diǎn)D的橫坐標(biāo)為﹣5,求拋物線的函數(shù)表達(dá)式;

(2)若在第一象限內(nèi)的拋物線上有點(diǎn)P,使得以A,B,P為頂點(diǎn)的三角形與△ABC相似,求k的值;

(3)在(1)的條件下,設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個(gè)單位的速度運(yùn)動(dòng)到F,再沿線段FD以每秒2個(gè)單位的速度運(yùn)動(dòng)到D后停止,當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少?

【答案】(1)拋物線的函數(shù)表達(dá)式為:y=(x+2)(x﹣4);

(2)k=或k=

(3)當(dāng)點(diǎn)F坐標(biāo)為(﹣2,2)時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少.

【解析】

試題分析:(1)首先求出點(diǎn)A、B坐標(biāo),然后求出直線BD的解析式,求得點(diǎn)D坐標(biāo),代入拋物線解析式,求得k的值;

(2)因?yàn)辄c(diǎn)P在第一象限內(nèi)的拋物線上,所以∠ABP為鈍角.因此若兩個(gè)三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.如答圖2,按照以上兩種情況進(jìn)行分類討論,分別計(jì)算;

(3)由題意,動(dòng)點(diǎn)M運(yùn)動(dòng)的路徑為折線AF+DF,運(yùn)動(dòng)時(shí)間:t=AF+DF.如答圖3,作輔助線,將AF+DF轉(zhuǎn)化為AF+FG;再由垂線段最短,得到垂線段AH與直線BD的交點(diǎn),即為所求的F點(diǎn).

試題解析:(1)拋物線y=(x+2)(x﹣4),

令y=0,解得x=﹣2或x=4,

∴A(﹣2,0),B(4,0).

∵直線y=﹣x+b經(jīng)過點(diǎn)B(4,0),

∴﹣×4+b=0,解得b=,

∴直線BD解析式為:y=﹣x+

當(dāng)x=﹣5時(shí),y=3

∴D(﹣5,3).

∵點(diǎn)D(﹣5,3)在拋物線y=(x+2)(x﹣4)上,

(﹣5+2)(﹣5﹣4)=3,

∴k=

∴拋物線的函數(shù)表達(dá)式為:y=(x+2)(x﹣4).

(2)由拋物線解析式,令x=0,得y=﹣k,

∴C(0,﹣k),OC=k.

因?yàn)辄c(diǎn)P在第一象限內(nèi)的拋物線上,所以∠ABP為鈍角.

因此若兩個(gè)三角形相似,只可能是△ABC∽△APB或△ABC∽△PAB.

①若△ABC∽△APB,則有∠BAC=∠PAB,如答圖2﹣1所示.

設(shè)P(x,y),過點(diǎn)P作PN⊥x軸于點(diǎn)N,則ON=x,PN=y.

tan∠BAC=tan∠PAB,即:,

∴P(x,),代入拋物線解析式y(tǒng)=(x+2)(x﹣4),

(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,

解得:x=8或x=﹣2(與點(diǎn)A重合,舍去),

∴P(8,5k).

∵△ABC∽△APB,

,即,

解得:k=

②若△ABC∽△PAB,則有∠ABC=∠PAB,如答圖2﹣2所示.

與①同理,可求得:k=

綜上所述,k=或k=

(3)如答圖3,由(1)知:D(﹣5,3),

如答圖2﹣2,過點(diǎn)D作DN⊥x軸于點(diǎn)N,則DN=3,ON=5,BN=4+5=9,

∴tan∠DBA=

∴∠DBA=30°.

過點(diǎn)D作DK∥x軸,則∠KDF=∠DBA=30°.

過點(diǎn)F作FG⊥DK于點(diǎn)G,則FG=DF.

由題意,動(dòng)點(diǎn)M運(yùn)動(dòng)的路徑為折線AF+DF,運(yùn)動(dòng)時(shí)間:t=AF+DF,

∴t=AF+FG,即運(yùn)動(dòng)的時(shí)間值等于折線AF+FG的長(zhǎng)度值.

由垂線段最短可知,折線AF+FG的長(zhǎng)度的最小值為DK與x軸之間的垂線段.

過點(diǎn)A作AH⊥DK于點(diǎn)H,則t最小=AH,AH與直線BD的交點(diǎn),即為所求之F點(diǎn).

∵A點(diǎn)橫坐標(biāo)為﹣2,直線BD解析式為:y=﹣x+,

∴y=﹣×(﹣2)+=2,

∴F(﹣2,2).

綜上所述,當(dāng)點(diǎn)F坐標(biāo)為(﹣2,2)時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)今,人們對(duì)健康愈加重視,跑步鍛煉成了人們的首要選擇,許多與運(yùn)動(dòng)有關(guān)的手機(jī)APP應(yīng)運(yùn)而生,聰聰給自己定了目標(biāo),每天跑步公里.以目標(biāo)路程為基準(zhǔn),超過的部分記為正,不足的部分記為負(fù),他記下了七天的跑步路程:

日期

18

19

20

21

22

23

24

路程(公里)

+1.72

+3.20

—1.91

—0.96

—1.88

+3.30

+0.07

1)分別用含的代數(shù)式表示22日及23日的跑步路程;

2)如圖所示是聰聰24日跑步路程是7.07公里,求的值;

3)若跑步一公里消耗的熱量為60千卡,請(qǐng)問聰聰跑步七天一共消耗了多少熱量?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018春季環(huán)境整治活動(dòng)中,某社區(qū)計(jì)劃對(duì)面積為1600m2的區(qū)域進(jìn)行綠化.經(jīng)投標(biāo),由甲、乙兩個(gè)工程隊(duì)來完成,若甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用5天.

(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積;

(2)設(shè)甲工程隊(duì)施工x天,乙工程隊(duì)施工y天,剛好完成綠化任務(wù),求y關(guān)于x的函數(shù)關(guān)系式;

(3)若甲隊(duì)每天綠化費(fèi)用是0.6萬元,乙隊(duì)每天綠化費(fèi)用為0.25萬元,且甲乙兩隊(duì)施工的總天數(shù)不超過25天,則如何安排甲乙兩隊(duì)施工的天數(shù),使施工總費(fèi)用最低?并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】城市發(fā)展 交通先行,成都市今年在中心城區(qū)啟動(dòng)了緩堵保暢的二環(huán)路高架橋快速通道建設(shè)工程,建成后將大大提升二環(huán)路的通行能力.研究表明,某種情況下,高架橋上的車流速度V(單位:千米/時(shí))是車流密度x(單位:輛/千米)的函數(shù),且當(dāng)0<x28時(shí),V=80;當(dāng)28<x188時(shí),V是x的一次函數(shù).函數(shù)關(guān)系如圖所示.

(1)求當(dāng)28<x188時(shí),V關(guān)于x的函數(shù)表達(dá)式;

(2)若車流速度V不低于50千米/時(shí),求當(dāng)車流密度x為多少時(shí),車流量P(單位:輛/時(shí))達(dá)到最大,并求出這一最大值.

(注:車流量是單位時(shí)間內(nèi)通過觀測(cè)點(diǎn)的車輛數(shù),計(jì)算公式為:車流量=車流速度×車流密度)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位大門口有個(gè)圓形柱子,已知柱子的直徑為1 m、高為5 m,為慶祝國(guó)慶節(jié),單位想在柱子上掛一根彩帶.(以下計(jì)算規(guī)定=3)

(1)當(dāng)彩帶從A點(diǎn)開始繞柱子1圈后,掛在點(diǎn)A的正上方

的點(diǎn)B處,求彩帶最短需要多少米?

(2)當(dāng)彩帶從A點(diǎn)開始繞柱子4圈后,掛在點(diǎn)A的正上方

的點(diǎn)B處,求彩帶最短又需要多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮從家步行到公交車站臺(tái),等公交車去學(xué)校. 圖中的折線表示小亮的行程s(km)與所花時(shí)間t(min)之間的函數(shù)關(guān)系. 下列說法錯(cuò)誤的是

A. 他離家8km共用了30min B. 他等公交車時(shí)間為6min

C. 他步行的速度是100m/min D. 公交車的速度是350m/min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn) O 是坐標(biāo)原點(diǎn),四邊形 ABCO 是菱形,點(diǎn) A 的坐標(biāo)為(-3,4),點(diǎn) C x 軸的正半軸上,直線 AC y 軸于點(diǎn) MAB 邊交 y 軸于點(diǎn) H

1)求直線 AC 的解析式;

2)連接 BM,如圖 2,動(dòng)點(diǎn) P 從點(diǎn) A 出發(fā),沿折線 ABC 方向以 2 個(gè)單位/秒的速度向終點(diǎn) C 勻速運(yùn)動(dòng),設(shè)PMB 的面積為 SS≠0),點(diǎn) P 的運(yùn)動(dòng)時(shí)間為t 秒,求 S t 之間的函數(shù)關(guān)系式(要求寫出自變量 t 的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(-20),等邊三角形AOC經(jīng)過平移或軸對(duì)稱或旋轉(zhuǎn)對(duì)稱都可以得到OBD。

1AOC沿x軸向右平移得到OBD,則平移的距離是 個(gè)單位長(zhǎng)度;AOCOBD關(guān)于直線對(duì)稱,則對(duì)稱軸是 AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到OBD,則旋轉(zhuǎn)角可以是 度;

2)連接AD,交OC于點(diǎn)E,求AEO的度數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案