如圖,已知C、D、E三點在同一直線上,∠1=105°,∠A=75°.
求證:AB∥CD.
證明一:∵C、D、E三點在同一直線上,
∴∠1+∠2=180°(平角定義),
∵∠1=105°,
∴∠2=75°
(鄰補角的定義)
(鄰補角的定義)
,
又∵∠A=75°,
∴∠2=∠A,
∴AB∥CD
內(nèi)錯角相等,兩直線平行
內(nèi)錯角相等,兩直線平行

證明二:∵C、D、E三點在同一直線上,
∴∠1和∠A是直線AB和直線CD被直線AD所截得到的同旁內(nèi)角(同旁內(nèi)角定義),
又∵∠A=75°,∠1=105°,
∴∠A+∠1=75°+105°=180°,
∴AB∥CD
同旁內(nèi)角互補,兩直線平行
同旁內(nèi)角互補,兩直線平行
分析:證明方法一:利用鄰補角的定義計算出∠2=75°,然后根據(jù)內(nèi)錯角相等,兩直線平行;
證明方法二:直接根據(jù)同旁內(nèi)角互補,兩直線平行.
解答:證明一:∵C、D、E三點在同一直線上,
∴∠1+∠2=180°(平角定義),
∵∠1=105°,
∴∠2=75°(鄰補角的定義),
又∵∠A=75°,
∴∠2=∠A,
∴AB∥CD(內(nèi)錯角相等,兩直線平行).
證明二:∵C、D、E三點在同一直線上,
∴∠1和∠A是直線AB和直線CD被直線AD所截得到的同旁內(nèi)角(同旁內(nèi)角定義),
又∵∠A=75°,∠1=105°,
∴∠A+∠1=75°+105°=180°,
∴AB∥CD(同旁內(nèi)角互補,兩直線平行).
故答案為鄰補角的定義,內(nèi)錯角相等,兩直線平行,同旁內(nèi)角互補,兩直線平行.
點評:本題考查了平行線的判定:同位角相等,兩直線平行;內(nèi)錯角相等,兩直線平行;同旁內(nèi)角互補,兩直線平行.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC內(nèi)接于⊙O,過A作⊙O的切線,與BC的延長線交于D,且AD=
3
+1
,CD精英家教網(wǎng)=2,∠ADC=30°
(1)AC與BC的長;
(2)求∠ABC的度數(shù);
(3)求弓形AmC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

30、如圖,已知直線a,b與直線c相交,下列條件中不能判定直線a與直線b平行的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

40、尺規(guī)作圖:如圖,已知直線BC及其外一點P,利用尺規(guī)過點P作直線BC的平行線.(用兩種方法,不要求寫作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:DE∥BC,AB=14,AC=18,AE=10,則AD的長為(  )
A、
9
70
B、
70
9
C、
5
126
D、
126
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,已知直線AB∥CD,∠1=50°,則∠2=
50
度.

查看答案和解析>>

同步練習冊答案