【題目】如圖是某景區(qū)的環(huán)形游覽路線ABCDA,已知從景點(diǎn)C到出口A的兩條道路CBA和CDA均為1600米,現(xiàn)有1號、2號兩游覽車分別從出口A和景點(diǎn)C同時出發(fā),1號車順時針、2號車逆時針沿環(huán)形道路連續(xù)循環(huán)行駛,供游客隨時免費(fèi)乘車(上、下車的時間忽略不計(jì)),兩車的速度均為200米/分,每一個游客的步行速度均為50米/分.
(1)探究(填空):
①當(dāng)兩車行駛 分鐘時,1、2號車第一次相遇,此相遇點(diǎn)到出口A的路程為 米;
②當(dāng)1號車第二次恰好經(jīng)過點(diǎn)C,此時兩車行駛了 分鐘,這一段時間內(nèi)1號車與2號車相遇了 次.
(2)發(fā)現(xiàn):
若游客甲在BC上K處(不與點(diǎn)C、B重合)候車,準(zhǔn)備乘車到出口A,在下面兩種情況下,請問哪種情況用時較少(含候車時間)?請說明理由.
情況一:若他剛好錯過2號車,便搭乘即將到來的1號車;
情況二:若他剛好錯過1號車,便搭乘即將到來的2號車.
(3)決策:
①若游客乙在DA上從D向出口A走去,游客乙從D出發(fā)時恰好2號車在C處,當(dāng)步行到DA上一點(diǎn)P(不與A,D重合)時,剛好與2號車相遇,經(jīng)計(jì)算他發(fā)現(xiàn):此時原地(P點(diǎn))等候乘1號車到出口與直接從P步行到達(dá)出口A這兩種方式,所花時間相等,請求出D點(diǎn)到出口A的路程.
②當(dāng)游客丙逛完景點(diǎn)C后準(zhǔn)備到出口A,此時2號車剛好在B點(diǎn),已知BC路程為600米,請你幫助游客丙做一下決策,怎樣到出口A所花時間最少,并說明理由.
【答案】(1)①4,800;②24,3;(2)情況一所用時間比較少,理由詳見解析;(3)①D到A的路程為800 米;②丙應(yīng)該選擇乘坐 1 號車所需時間最少.
【解析】
(1)①設(shè)兩車行駛m分鐘時相遇,根據(jù)1號車行駛的路程+2號車行駛的路程=道路CBA的長,列方程求解可得:繼而得出相遇點(diǎn)到出口A的路程;
②1號車第2次經(jīng)過點(diǎn)C時所行駛的路程為1600+3200=4800米,結(jié)合速度可得時間,再分別求出1、2號車第2、3、4次相遇時間可得答案;
(2)設(shè)CK=x米,分別表示出搭乘1號車和2號車后行駛的路程,求出時間比較大小即可;
(3)①設(shè)P到A的路程為a米,由2號車從C→B→A→P的時間為分鐘得出D到P的路程為50,再根據(jù)“原地(P點(diǎn))等候乘1號車到出口所用時間=直接從P步行到達(dá)出口A所用時間”列方程求得a的值,繼而可得出答案;
②分別計(jì)算出丙選擇乘坐1號車、2號車和步行三種方式所用時間,可得答案.
(1)①設(shè)兩車行駛m分鐘時,1、2號車第一次相遇,根據(jù)題意得:
200x+200x=1600
解得:x=4,200x=800.
故當(dāng)兩車行駛4分鐘時,1、2號車第一次相遇,此相遇點(diǎn)到出口A的路程為800米;
②當(dāng)1號車第二次恰好經(jīng)過點(diǎn)C,此時兩車行駛時間為24(分鐘),兩車第二次相遇時間為412分鐘,第三次相遇時間為1220分鐘,第四次相遇時間為2028分鐘,∴這一段時間內(nèi)1號車與2號車相遇了3次.
故答案為:24,3;
(2)情況一所用時間比較少,設(shè)CK=x米,由題意知,情況一需要時間為:16,情況二需要的時間為:16,∴情況一所用時間比較少;
(3)①設(shè)P到A的路程為a米,則2號車從C→B→A→P的時間為分鐘,∴D到P的路程為50,由題意知,,解得:a=320,∴D到P的路程為50=480米,∴D到A的路程為320+480=800米;
②若丙選擇乘坐1號車,所需時間為13分鐘,若丙選擇乘坐2號車,所需時間為21分鐘,若丙選擇步行到出口A,所需時間為32分鐘,所以丙應(yīng)該選擇乘坐1號車所需時間最少.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩組鄰邊分別相等的四邊形叫做“箏形”.如圖,四邊形ABCD是一個箏形,其中AD=CD,AB=CB,小詹在探究箏形的性質(zhì)時,得到如下結(jié)論:
①AC⊥BD;②AO=CO;③△ABD≌△CBD.
其中正確的結(jié)論有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC和△ADE都是等腰直角三角形,點(diǎn)D是直線BC上的一動點(diǎn)(點(diǎn)D不與B、C重合),連接CE.
(1)在圖1中,當(dāng)點(diǎn)D在邊BC上時,求證:BC=CE+CD;
(2)在圖2中,當(dāng)點(diǎn)D在邊BC的延長線上時,結(jié)論BC=CE+CD是否還成立?若不成立,請猜想BC、CE、CD之間存在的數(shù)量關(guān)系,并說明理由;
(3)在圖3中,當(dāng)點(diǎn)D在邊BC的反向延長線上時,補(bǔ)全圖形,不需寫證明過程,直接寫出BC、CE、CD之間存在的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點(diǎn) A,B 到表示2 的點(diǎn)的距離都為 9,P 為線段 AB 上任一點(diǎn),C,D 兩點(diǎn)分別從 P,B 同時向 A 點(diǎn)移動,且 C 點(diǎn)運(yùn)動速度為每秒 3 個單位長度,D 點(diǎn)運(yùn)動速度為每秒 4 個單位長度,運(yùn)動 3 秒時,CD=4,則 P 點(diǎn)表示的數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將長為 1,寬為 a 的長方形紙片(0.5<a<1)如圖折疊,剪下一個邊長等于長方形的寬度的正方形(稱為第一次操作);再把剩下的長方形如圖折疊,剪下一個邊長等于此時長方形寬度的正方形 (稱為第二次操作);如此反復(fù)操作下去,如此反復(fù)下去,若在第 n 次操作后剩下的長方形恰好為正方形,則操作終止.
(1)第一次操作后,剩下的長方形兩邊長分別為 ;(用含 a 的代數(shù)式表示)
(2)若第二次操作后,剩下的長方形恰好是正方形,則求 a 的值,寫出解答過程;
(3)若第三次操作后,剩下的長方形恰好是正方形,畫出示意圖形,直接寫出 a 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,P,Q分別是BC,AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別是R,S,若AQ=PQ,PR=PS,下面三個結(jié)淪:①AS=AR:②QP∥AR;③△BRP≌△CSP.其中正確的是( )
A. ①③ B. ②③ C. ①② D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3000米.甲同學(xué)先步行600米,然后乘公交車去學(xué)校、乙同學(xué)騎自行車去學(xué)校.已知甲步行速度是乙騎自行車速度的 ,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學(xué)同時從家發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到2分鐘.
(1)求乙騎自行車的速度;
(2)當(dāng)甲到達(dá)學(xué)校時,乙同學(xué)離學(xué)校還有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,點(diǎn)E是BC邊上的點(diǎn),AE=BC,DF⊥AE,垂足為點(diǎn)F,連接DE.
(1)求證:AB=DF;
(2)求證:DE平分∠AEC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年3月27日“麗水半程馬拉松競賽”在蓮都舉行,某運(yùn)動員從起點(diǎn)萬地廣場西門出發(fā),途經(jīng)紫金大橋,沿比賽路線跑回終點(diǎn)萬地廣場西門.設(shè)該運(yùn)動員離開起點(diǎn)的路程S(千米)與跑步時間t(分鐘)之間的函數(shù)關(guān)系如圖所示,其中從起點(diǎn)到紫金大橋的平均速度是0.3千米/分,用時35分鐘,根據(jù)圖像提供的信息,解答下列問題:
(1)求圖中a的值;
(2)組委會在距離起點(diǎn)2.1千米處設(shè)立一個拍攝點(diǎn)C,該運(yùn)動員從第一次過C點(diǎn)到第二次過C點(diǎn)所用的時間為68分鐘.
①求AB所在直線的函數(shù)解析式;
②該運(yùn)動員跑完賽程用時多少分鐘?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com