【題目】如圖,直線y=k1x+bk1≠0)與雙曲線k2≠0)相交于A12)、Bm﹣1)兩點.

1)求直線和雙曲線的解析式;

2)若A1x1,y1),A2x2,y2),A3x3,y3)為雙曲線上的三點,且x10x2x3,請直接寫出y1,y2,y3的大小關系式;

3)觀察圖象,請直接寫出不等式k1x+b的解集.

【答案】(1) y=x+1

(2)y2>y3>y1

(3) ﹣2<x<0x>1

【解析】

(1)將A坐標代入反比例解析式中求出k2的值,確定出雙曲線解析式,將B坐標代入反比例解析式求出m的值,確定出B坐標,將AB坐標代入一次函數(shù)解析式中求出k1b的值,即可確定出直線解析式。

(2)根據(jù)三點橫坐標的正負,得到A2A3位于第一象限,對應函數(shù)值大于0,A1位于第三象限,函數(shù)值小于0,且在第一象限為減函數(shù),即可得到大小關系式:

∵x1<0<x2<x3,且反比例函數(shù)在第一象限為減函數(shù),

∴A2A3位于第一象限,即y2>y3>0,A1位于第三象限,即y1<0,

y2>y3>y1。

(3)由兩函數(shù)交點坐標,利用圖象即可得出所求不等式的解集。

解:(1)將A(1,2)代入雙曲線解析式得:k2=2,即雙曲線解析式為。

B(m,﹣1)代入雙曲線解析式得:,即m=﹣2,∴B(﹣2,﹣1)。

AB坐標代入直線解析式得:,解得:

直線解析式為y=x+1。

(2)y2>y3>y1

(3)由A(1,2),B(﹣2,﹣1),

利用函數(shù)圖象得:不等式k1x+b<的解集為﹣2<x<0x>1。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB兩點在數(shù)軸上,點A表示的數(shù)為-10,OB=3OA,點M以每秒3個單位長度的速度從點A向右運動.點N以每秒2個單位長度的速度從點O向右運動(點M、點N同時出發(fā))

1)數(shù)軸上點B對應的數(shù)是______

2)經(jīng)過幾秒,點M、點N分別到原點O的距離相等?

3)當點M運動到什么位置時,恰好使AM=2BN

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過(2,3)和(-1,-3)兩點.

1)在平面直角坐標系中畫出這個函數(shù)的圖象;

2)求這個一次函數(shù)的關系式.

3)求出該函數(shù)圖像與x軸的交點坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】抗震救災中,某縣糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉(zhuǎn)移到具有較強抗震功能的A、B兩倉庫。已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為70噸,B庫的容量為110噸。從甲、乙兩庫到AB兩庫的路程和運費如下表(表中“元/噸·千米”表示每噸糧食運送1千米所需人民幣)

1)若甲庫運往A庫糧食x噸,請寫出將糧食運往A、B兩庫的總運費y(元)與x(噸)的函數(shù)關系式;

2)當甲、乙兩庫各運往A、B兩庫多少噸糧食時,總運費最省,最省的總運費是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為組織代表隊參加市拜炎帝、誦經(jīng)典吟誦大賽,初賽后對選手成績進行了整理,分成5個小組(x表示成績,單位:分),A組:75≤x80;B組:80≤x85C組:85≤x90;D組:90≤x95;E組:95≤x100.并繪制出如圖兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中信息,解答下列問題:

1)參加初賽的選手共有 名,請補全頻數(shù)分布直方圖;

2)扇形統(tǒng)計圖中,C組對應的圓心角是多少度?E組人數(shù)占參賽選手的百分比是多少?

3)學校準備組成8人的代表隊參加市級決賽,E6名選手直接進入代表隊,現(xiàn)要從D組中的兩名男生和兩名女生中,隨機選取兩名選手進入代表隊,請用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市居民用電的電價實行階梯收費,收費標準如下表:

一戶居民每月用電量x()

電費價格(/)

0.48

0.53

0.78

七月份是用電高峰期,李叔計劃七月份電費支出不超過200元,則李叔家七月份最多可用電的度數(shù)是( ).

A. 100B. 400C. 396D. 397

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AEBD于點E,CFBD于點F,連接AF,CE,若DE=BF,則下列結(jié)論:CF=AE;OE=OF;四邊形ABCD是平行四邊形;圖中共有四對全等三角形.其中正確結(jié)論的個數(shù)是

A.4 B.3 C2 D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,O是斜邊AB的中點,點D,E分別在直角邊ACBC上,且∠DOE=90°DEOC于點P.則下列結(jié)論:(1)AD+BE=AC(2)AD2+BE2=DE2;(3)ABC的面積等于四邊形CDOE面積的2倍;(4)OD=OE.其中正確的結(jié)論有( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點P(-2,3)關于直線y=x-1對稱的點的坐標是_______

查看答案和解析>>

同步練習冊答案