【題目】如圖,在矩形ABCD中,EAB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連結(jié)AP并延長APCDF點,連結(jié)CP并延長CPADQ點.給出以下結(jié)論:

①四邊形AECF為平行四邊形;

②∠PBA=APQ;

③△FPC為等腰三角形;

④△APB≌△EPC.

其中正確結(jié)論的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】①根據(jù)三角形內(nèi)角和為180°易證∠PAB+PBA=90°,易證四邊形AECF是平行四邊形,即可解題;

②根據(jù)平角定義得:∠APQ+BPC=90°,由正方形可知每個內(nèi)角都是直角,再由同角的余角相等,即可解題;

③根據(jù)平行線和翻折的性質(zhì)得:∠FPC=PCE=BCE,FPC≠FCP,且∠PFC是鈍角,FPC不一定為等腰三角形;

④當(dāng)BP=ADBPC是等邊三角形時,APB≌△FDA,即可解題.

①如圖,EC,BP交于點G;

∵點P是點B關(guān)于直線EC的對稱點,

EC垂直平分BP,

EP=EB,

∴∠EBP=EPB,

∵點EAB中點,

AE=EB,

AE=EP,

∴∠PAB=PBA,

∵∠PAB+PBA+APB=180°,即∠PAB+PBA+APE+BPE=2(PAB+PBA)=180°,

∴∠PAB+PBA=90°,

APBP,

AFEC;

AECF,

∴四邊形AECF是平行四邊形,

故①正確;

②∵∠APB=90°,

∴∠APQ+BPC=90°,

由折疊得:BC=PC,

∴∠BPC=PBC,

∵四邊形ABCD是正方形,

∴∠ABC=ABP+PBC=90°,

∴∠ABP=APQ,

故②正確;

③∵AFEC,

∴∠FPC=PCE=BCE,

∵∠PFC是鈍角,

當(dāng)BPC是等邊三角形,即∠BCE=30°時,才有∠FPC=FCP,

如右圖,PCF不一定是等腰三角形,

故③不正確;

④∵AF=EC,AD=BC=PC,ADF=EPC=90°,

RtEPC≌△FDA(HL),

∵∠ADF=APB=90°,FAD=ABP,

當(dāng)BP=ADBPC是等邊三角形時,APB≌△FDA,

∴△APB≌△EPC,

故④不正確;

其中正確結(jié)論有①②,2個,

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(﹣6,n),與x軸交于點C.

(1)求一次函數(shù)y=kx+b的關(guān)系式;

(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;

(3)若點P在x軸上,且SACP=SBOC,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)﹣5,|1.5|,﹣,0,3,﹣(﹣1)表示的點.

1)畫在數(shù)軸上;

2)用“<”把這些數(shù)連接起來;

3)指出:負數(shù)是   ;分?jǐn)?shù)是   ;非負整數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生最喜歡的球類運動情況,隨機選取該校部分學(xué)生進行調(diào)查,要求每名學(xué)生只寫一類最喜歡的球類運動.以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.

根據(jù)以上信息,解答下列問題:

(1)被調(diào)查的學(xué)生中,最喜歡乒乓球的有 人,最喜歡籃球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %;

(2)被調(diào)查學(xué)生的總數(shù)為 人,其中,最喜歡籃球的有 人,最喜歡足球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %;

(3)該校共有450名學(xué)生,根據(jù)調(diào)查結(jié)果,估計該校最喜歡排球的學(xué)生數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標(biāo)為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點O為△ABC的兩條角平分線的交點,過點OODBC于點D,且OD4.若△ABC的周長是17,則△ABC的面積為( 。

A. 34B. 17C. 8.5D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上兩點對應(yīng)的數(shù)分別為、16,點為數(shù)軸上一動點,點對應(yīng)的數(shù)為

1)填空:若時,點到點、點的距離之和為_____________.

2)填空:若點到點、點的距離相等,則_______.

3)填空:若,則_______.

4)若動點以每秒2個單位長度的速度從點向點運動,動點以每秒3個單位長度的速度從點向點運動兩動點同時運動且一動點到達終點時另一動點也停止運動,經(jīng)過,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AGBC于點G,AFDE于點F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)a在數(shù)軸上表示的點在原點左側(cè),距離原點3個單位長,b在數(shù)軸上表示的點在原點右側(cè),距離原點2個單位長,cd互為倒數(shù),mn互為相反數(shù),y為最大的負整數(shù),求(y+b2+ma-cd-nb2的值.

查看答案和解析>>

同步練習(xí)冊答案