【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點(diǎn)A(m,3)、B(﹣6,n),與x軸交于點(diǎn)C.
(1)求一次函數(shù)y=kx+b的關(guān)系式;
(2)結(jié)合圖象,直接寫(xiě)出滿足kx+b>的x的取值范圍;
(3)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo).
【答案】(1)y=x+2;(2)﹣6<x<0或x>2;(3)(﹣2,0)或(﹣6,0)
【解析】分析:(1)把點(diǎn)A、B的坐標(biāo)分別代入反比例函數(shù)解析式中,求出m、n的值,得到點(diǎn)A、B的坐標(biāo),再將點(diǎn)A、B的坐標(biāo)分別代入一次函數(shù)解析式中即可確定出一次函數(shù)解析式;
(2)結(jié)合圖象,根據(jù)兩函數(shù)的交點(diǎn)橫坐標(biāo),找出一次函數(shù)圖象在反比例圖象上方時(shí)x的范圍即可;
(3)先求出△BOC的面積,再根據(jù)S△ACP=S△BOC求出CP的長(zhǎng),進(jìn)而得到點(diǎn)P的坐標(biāo).
詳解:(1)將A(m,3)代入反比例解析式得:m=2,則A(2,3),
將B(-6,n)代入反比例解析式得:n=-1,則B(-6,-1),
將A與B的坐標(biāo)代入y=kx+b得:,
解得:,
則一次函數(shù)解析式為y=x+2;
(2)由圖象得:x+2>的x的取值范圍是:-6<x<0或x>2;
(3)∵y=x+2中,y=0時(shí),x+2=0,
解得x=-4,則C(-4,0),OC=4
∴△BOC的面積=×4×1=2,
∴S△ACP=S△BOC=×2=3.
∵S△ACP=CP×3=CP,
∴CP=3,
∴CP=2,
∵C(-4,0),
∴點(diǎn)P的坐標(biāo)為(-2,0)或(-6,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,對(duì)角線、相交于點(diǎn),點(diǎn)是上的點(diǎn),且. 連接、,使它們分別與相交于點(diǎn).
(1)求的值;
(2)求證:;
(3)設(shè),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB內(nèi)部有三條射線,OE平分∠BOC,OF平分∠AOC.
(1)若∠AOB=90°,∠AOC=30°,求∠EOF的度數(shù);
(2)若∠AOB=,求∠EOF的度數(shù)(寫(xiě)出求解過(guò)程);
(3)若將條件中“OE平分∠BOC,OF平分∠AOC.平分”改為“∠EOB=∠COB,∠COF=∠COA”,且∠AOB=,求∠EOF的度數(shù)(寫(xiě)出求解過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】典典同學(xué)學(xué)完統(tǒng)計(jì)知識(shí)后,隨機(jī)調(diào)查了她家所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形和條形統(tǒng)計(jì)圖:
請(qǐng)根據(jù)以上不完整的統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中a= ,b= ;并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該轄區(qū)共有居民3500人,請(qǐng)估計(jì)年齡在0~14歲的居民的人數(shù).
(3)一天,典典知道了轄區(qū)內(nèi)60歲以上的部分老人參加了市級(jí)門(mén)球比賽,比賽的老人們分成甲、乙兩組,典典很想知道甲乙兩組的比賽結(jié)果,王大爺告訴說(shuō),甲組與乙組的得分和為110,甲組得分不低于乙組得分的1.5倍,甲組得分最少為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸正半軸上,點(diǎn)C在第一象限,且∠COA=60°,以OA、OC為鄰邊作菱形OABC,且菱形OABC的面積為.
(1)求B. C兩點(diǎn)的坐標(biāo);
(2)動(dòng)點(diǎn)P從C點(diǎn)出發(fā)沿射線CB勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從A點(diǎn)出發(fā)沿射線BA的方向勻速運(yùn)動(dòng),P、Q兩點(diǎn)的運(yùn)動(dòng)速度均為2個(gè)單位/秒,連接PQ和AC,PQ和AC所在直線交于點(diǎn)D,點(diǎn)E為線段BQ的中點(diǎn),連接DE,設(shè)動(dòng)點(diǎn)P、Q的運(yùn)動(dòng)時(shí)間為t,請(qǐng)將△DQE的面積S用含t的式子表示,并直接寫(xiě)出t的取值范圍;
(3)在(2)的條件下,過(guò)點(diǎn)Q作QF⊥y軸于點(diǎn)F,當(dāng)t為何值時(shí),以P、B.、F.、Q為頂點(diǎn)的四邊形為平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
材料:我們知道,如果一個(gè)三角形的三邊長(zhǎng)固定,那么這個(gè)三角形就固定。若給出任意一個(gè)三角形的三邊長(zhǎng),你能求出它的面積嗎?設(shè)一個(gè)三角形的三邊長(zhǎng)分別為,,,我們把它的面積記為,古希臘的幾何學(xué)家海倫(Hcron,約公元50年),在數(shù)學(xué)史上以解決幾何測(cè)量問(wèn)題而聞名,在他的著作《度量》一書(shū)中,給出了一個(gè)通過(guò)三角形的三邊長(zhǎng)來(lái)求面積的海倫公式。我們可以把海倫公式變形為:(其中)
材料2:把形如的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆寫(xiě),即.配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最最大(小)值.
例如:求的最小值.
當(dāng)時(shí),,此時(shí)取得最小值,
請(qǐng)你運(yùn)用材料提供的方法,解答以下問(wèn)題:
(1)若三角形的三邊長(zhǎng)分別為,,,求該三角形的面積;
(2)小新手里有一根長(zhǎng)米的鐵絲,他想用這根鐵絲制作一個(gè)三角形模型,要求該三角形的一邊長(zhǎng)為米且面積最大,請(qǐng)你幫助他計(jì)算出這個(gè)三角形另兩邊的邊長(zhǎng),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線PA是一次函數(shù)y=x+1的圖象,直線PB是一次函數(shù)y=-2x+2的圖象.
(1)求A、B、P三點(diǎn)的坐標(biāo);
(2)求四邊形PQOB的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】釣魚(yú)島自古就是中國(guó)的!2017年5月18日,中國(guó)海警2305,2308,2166,33115艦船隊(duì)在中國(guó)的釣魚(yú)島領(lǐng)海內(nèi)巡航,如圖,我軍以30km/h的速度在釣魚(yú)島A附近進(jìn)行合法巡邏,當(dāng)巡邏艦行駛到B處時(shí),戰(zhàn)士發(fā)現(xiàn)A在他的東北方向,巡邏艦繼續(xù)向北航行40分鐘后到達(dá)點(diǎn)C,發(fā)現(xiàn)A在他的東偏北15°方向,求此時(shí)巡邏艦與釣魚(yú)島的距離(≈1.414,結(jié)果精確到0.01)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com