【題目】設(shè)拋物線的解析式為y=ax2 , 過點B1(1,0)作x軸的垂線,交拋物線于點A1(1,2);過點B2( ,0)作x軸的垂線,交拋物線于點A2;…;過點Bn(( )n﹣1 , 0)(n為正整數(shù))作x軸的垂線,交拋物線于點An , 連接AnBn+1 , 得Rt△AnBnBn+1 .
(1)求a的值;
(2)直接寫出線段AnBn , BnBn+1的長(用含n的式子表示);
(3)在系列Rt△AnBnBn+1中,探究下列問題:
①當(dāng)n為何值時,Rt△AnBnBn+1是等腰直角三角形?
②設(shè)1≤k<m≤n(k,m均為正整數(shù)),問:是否存在Rt△AkBkBk+1與Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,說明理由.
【答案】
(1)
解:∵點A1(1,2)在拋物線的解析式為y=ax2上,
∴a=2;
(2)
解:AnBn=2x2=2×[( )n﹣1]2=( )2n-3,
BnBn+1=( )n;
(3)
解:由Rt△AnBnBn+1是等腰直角三角形得AnBn=BnBn+1,則:( )2n-3=( )n,
2n﹣3=n,n=3,
∴當(dāng)n=3時,Rt△AnBnBn+1是等腰直角三角形,
②依題意得,∠AkBkBk+1=∠AmBmBm+1=90°,
有兩種情況:i)當(dāng)Rt△AkBkBk+1∽Rt△AmBmBm+1時,
= , = , = ,
所以,k=m(舍去),
ii)當(dāng)Rt△AkBkBk+1∽Rt△Bm+1BmAm時,
= , = , = ,
∴k+m=6,
∵1≤k<m≤n(k,m均為正整數(shù)),
∴取 或 ;
當(dāng) 時,Rt△A1B1B2∽Rt△B6B5A5,
相似比為: = =64,
當(dāng) 時,Rt△A2B2B3∽Rt△B5B4A4,
相似比為: = =8,
所以:存在Rt△AkBkBk+1與Rt△AmBmBm+1相似,其相似比為64:1或8:1.
【解析】本題考查了二次函數(shù)的綜合問題,這是一個函數(shù)類的規(guī)律題,把坐標(biāo)、二次函數(shù)和線段有機地結(jié)合在一起,以求線段的長為突破口,以相似三角形的對應(yīng)邊的比為等量關(guān)系,代入計算解決問題,綜合性較強,因為本題小字標(biāo)較多,容易出錯.(1)直接把點A1的坐標(biāo)代入y=ax2求出a的值;(2)由題意可知:A1B1是點A1的縱坐標(biāo):則A1B1=2×12=2;A2B2是點A2的縱坐標(biāo):則A2B2=2×( )2= ;…則AnBn=2x2=2×[( )n﹣1]2=( )2n-3;
B1B2=1﹣ = ,B2B3= ﹣( )2 = =( )2 , …,BnBn+1=( )n;(3)因為Rt△AkBkBk+1與Rt△AmBmBm+1是直角三角形,所以分兩種情況討論:根據(jù)(2)的結(jié)論代入所得的對應(yīng)邊的比列式,計算求出k與m的關(guān)系,并與1≤k<m≤n(k,m均為正整數(shù))相結(jié)合,得出兩種符合條件的值,分別代入兩相似直角三角形計算相似比.
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)和相似三角形的判定的相關(guān)知識點,需要掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減;相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS)才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個不透明的口袋,甲口袋中裝有3個分別標(biāo)有數(shù)字1,2,3的小球,乙口袋中裝有2個分別標(biāo)有數(shù)字4,5的小球,它們的形狀、大小完全相同,現(xiàn)隨機從甲口袋中摸出一個小球記下數(shù)字,再從乙口袋中摸出一個小球記下數(shù)字.
(1)請用列表或樹狀圖的方法(只選其中一種),表示出兩次所得數(shù)字可能出現(xiàn)的所有結(jié)果;
(2)求出兩個數(shù)字之和能被3整除的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延長線與AD的延長線交于點E.
(注意:本題中的計算過程和結(jié)果均保留根號)
(1)若∠A=60°,求BC的長;
(2)若sinA= ,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.
(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六個完全相同的小長方形拼成了一個大長方形,AB是其中一個小長方形的對角線,請在大長方形中完成下列畫圖,要求:①僅用無刻度直尺,②保留必要的畫圖痕跡.
(1)在圖1中畫出一個45°角,使點A或點B是這個角的頂點,且AB為這個角的一邊;
(2)在圖2中畫出線段AB的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】望江中學(xué)為了了解學(xué)生平均每天“誦讀經(jīng)典”的時間,在全校范圍內(nèi)隨機抽查了部分學(xué)生進行調(diào)查統(tǒng)計,并將調(diào)查統(tǒng)計的結(jié)果分為:每天誦讀時間t≤20分鐘的學(xué)生記為A類,20分鐘<t≤40分鐘的學(xué)生記為B類,40分鐘<t≤60分鐘的學(xué)生記為C類,t>60分鐘的學(xué)生記為D類四種.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)m=%,n=%,這次共抽查了名學(xué)生進行調(diào)查統(tǒng)計;
(2)請補全上面的條形圖;
(3)如果該校共有1200名學(xué)生,請你估計該校C類學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC,則下列結(jié)論:
①abc>0;②9a+3b+c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c(a≠0)有一個根為﹣
其中正確的結(jié)論個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=4,BC>AB,點D在BC上,以AC為對角線的平行四邊形ADCE中,DE的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)市場批發(fā)甲、乙兩種水果,根據(jù)以往經(jīng)驗和市場行情,預(yù)計夏季某一段時間內(nèi),甲種水果的銷售利潤y甲(萬元)與進貨量x(噸)近似滿足函數(shù)關(guān)系y甲=0.3x;乙種水果的銷售利潤y乙(萬元)與進貨量x(噸)近似滿足函數(shù)關(guān)系y乙=ax2+bx(其中a≠0,a,b為常數(shù)),且進貨量x為1噸時,銷售利潤y乙為1.4萬元;進貨量x為2噸時,銷售利潤y乙為2.6萬元.
(1)求y乙(萬元)與x(噸)之間的函數(shù)關(guān)系式.
(2)如果市場準(zhǔn)備進甲、乙兩種水果共10噸,設(shè)乙種水果的進貨量為t噸,請你寫出這兩種水果所獲得的銷售利潤之和W(萬元)與t(噸)之間的函數(shù)關(guān)系式.并求出這兩種水果各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com