【題目】如圖,拋物線yx2+bxc經(jīng)過(guò)直線yx﹣3與坐標(biāo)軸的兩個(gè)交點(diǎn)A,B,此拋物線與x軸的另一個(gè)交點(diǎn)為C,拋物線的頂點(diǎn)為D

(1)求此拋物線的解析式;

(2)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),求使SAPCSACD=5:4的點(diǎn)P的坐標(biāo).

【答案】(1)yx2﹣2x﹣3.(2)滿足條件的點(diǎn)的坐標(biāo)為(4,5)或(﹣2,5).

【解析】

(1)先根據(jù)直線y=x-3求出A、B兩點(diǎn)的坐標(biāo),然后將它們代入拋物線中即可求出待定系數(shù)的值.

(2)根據(jù)(1)中拋物線的解析式可求出C,D兩點(diǎn)的坐標(biāo),由于APCACD同底,因此面積比等于高的比,即P點(diǎn)縱坐標(biāo)的絕對(duì)值:D點(diǎn)縱坐標(biāo)的絕對(duì)值=5:4.據(jù)此可求出P點(diǎn)的縱坐標(biāo),然后將其代入拋物線的解析式中,即可求出P點(diǎn)的坐標(biāo).

(1)直線y=x-3與坐標(biāo)軸的交點(diǎn)A(3,0),B(0,-3).

,

解得,

∴此拋物線的解析式y=x2-2x-3.

(2)拋物線的頂點(diǎn)D(1,-4),與x軸的另一個(gè)交點(diǎn)C(-1,0).

設(shè)P(a,a2-2a-3),則(×4×|a2-2a-3|):(×4×4)=5:4.

化簡(jiǎn)得|a2-2a-3|=5.

當(dāng)a2-2a-3=5,得a=4a=-2.

P(4,5)或P(-2,5),

當(dāng)a2-2a-3<0時(shí),即a2-2a+2=0,此方程無(wú)解.

綜上所述,滿足條件的點(diǎn)的坐標(biāo)為(4,5)或(-2,5).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1過(guò)點(diǎn)A(04),點(diǎn)D(4,0),直線l2x軸交于點(diǎn)C,兩直線,相交于點(diǎn)B

(1)求直線的解析式和點(diǎn)B的坐標(biāo);

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小杰在學(xué)完了《銳角三角比》知識(shí)后回家整理筆記,寫(xiě)下了下列四句活:(1)銳角A的正弦的值的范圍是0<sinA<1;(2)根據(jù)正切和余切的意義,可以得到tanA=;(3)在Rt△ABC中,如∠C=90°,則cosB=sinA;(4)在Rt△ABC中,如∠C=90°,則cotB=tanA;請(qǐng)你判斷上述語(yǔ)句正確的個(gè)數(shù)是( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,已知ABl,DEl,垂足分別為B、E,且Cl上一點(diǎn),∠ACD=90°.求證:△ABCCED

2)如圖2,在四邊形ABCD中,ABC=90°AB=6,BC=8CD=20,DA=.求BD的長(zhǎng)為_(kāi)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,二次函數(shù)≠0的圖像經(jīng)過(guò)點(diǎn)(3,5)、(2,8)、(0,8).

①求這個(gè)二次函數(shù)的解析式;

②已知拋物線≠0,≠0,且滿足≠0,1,則我們稱拋物線互為“友好拋物線”,請(qǐng)寫(xiě)出當(dāng)時(shí)第①小題中的拋物線的友好拋物線,并求出這“友好拋物線”的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在菱形ABCD中,AB=6,tan∠ABC=2,點(diǎn)E是射線DA上的一個(gè)動(dòng)點(diǎn),連接CE,將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角α(α=∠BCD,得到對(duì)應(yīng)線段CF

1)求證:BCEDCF

2)求線段DF的長(zhǎng)度的最小值;

3)如圖2,連接BD、EFBDEC、EF于點(diǎn)P、Q.當(dāng)△EPQ是直角三角形時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.動(dòng)點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)開(kāi)始移動(dòng),點(diǎn)P的速度為1 cm/秒,點(diǎn)Q的速度為2 cm/秒,點(diǎn)Q移動(dòng)到點(diǎn)C后停止,點(diǎn)P也隨之停止運(yùn)動(dòng)下列時(shí)間瞬間中,能使△PBQ的面積為15cm 的是(

A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB=DC,點(diǎn)M,N分別是ADBC的中點(diǎn),點(diǎn)E,F分別是BMCM的中點(diǎn). 1)求證:四邊形MENF是菱形; 2)當(dāng)四邊形MENF是正方形時(shí),求證:等腰梯形ABCD的高是底邊BC的一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰 Rt△ABC 中,AC=BC= 2,點(diǎn) P 在以斜邊 AB 為直徑的半圓上,M 為 PC的中點(diǎn).當(dāng)點(diǎn) P 沿半圓從點(diǎn) A 運(yùn)動(dòng)至點(diǎn) B 時(shí),點(diǎn) M 運(yùn)動(dòng)的路徑長(zhǎng)是( )

A. 2 B. 2 C. π D. π

查看答案和解析>>

同步練習(xí)冊(cè)答案