(2012•南關(guān)區(qū)模擬)如圖是由若干個(gè)邊長為1的小正方形組成的網(wǎng)格,在網(wǎng)格中有一個(gè)直角梯形(陰影部分),它的四個(gè)頂點(diǎn)都在網(wǎng)格的格點(diǎn)上.

(1)請(qǐng)?jiān)趫D①中畫出直角梯形向上平移2個(gè)單位長度的圖形.
(2)請(qǐng)?jiān)趫D②中以圖中某線段所在的直線為對(duì)稱軸,畫出直角梯形的軸對(duì)稱圖形.
(3)請(qǐng)?jiān)趫D③中以直角梯形的一個(gè)頂點(diǎn)為對(duì)稱中心,畫出直角梯形的中心對(duì)稱圖形.
分析:(1)將對(duì)應(yīng)點(diǎn)向上平移2個(gè)單位進(jìn)而得出圖形即可;
(2)以梯形上底一邊所在直線為對(duì)稱軸畫出軸對(duì)稱圖形即可;
(3)以梯形一頂點(diǎn)為對(duì)稱中心畫出中心對(duì)稱圖形即可.
解答:解:(1)如圖①所示:
(2)如圖②所示:(答案不唯一).
(3)如圖③所示:(答案不唯一).
點(diǎn)評(píng):本題主要考查了軸對(duì)稱圖形的性質(zhì)以及圖形的平移和中心對(duì)稱圖形的性質(zhì),作軸對(duì)稱、中心對(duì)稱、平移變換找出對(duì)應(yīng)點(diǎn)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南關(guān)區(qū)模擬)2012年國家財(cái)政性教育經(jīng)費(fèi)預(yù)算支出為21984億元,將首次占國內(nèi)生產(chǎn)總值4%以上.21984這個(gè)數(shù)字用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南關(guān)區(qū)模擬)如圖,半徑為1的動(dòng)圓P圓心在拋物線y=(x-2)2-1上,當(dāng)⊙P與x軸相切時(shí),點(diǎn)P的坐標(biāo)為
(2+
2
,1)、(2-
2
,1)、(2,-1)
(2+
2
,1)、(2-
2
,1)、(2,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南關(guān)區(qū)模擬)如圖,矩形ABCO(OA>OC)的兩邊分別在x軸的負(fù)半軸和y軸的正半軸上,點(diǎn)B在反比例函數(shù)y=-
8
x
(x<0)的圖象上,且OC=2.將矩形ABCO以C為旋轉(zhuǎn)中心,逆時(shí)針轉(zhuǎn)90°后得到矩形EFCD,反比例函數(shù)y=
k
x
(x<0)的圖象經(jīng)過點(diǎn)E.
(1)求k的值;
(2)判斷線段BE的中點(diǎn)M是否在反比例函數(shù)y=
k
x
(x<0)的圖象上,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南關(guān)區(qū)模擬)思考與推理
如圖①,在矩形ABCD中,點(diǎn)E為CD的中點(diǎn),連接AE并延長交BC的延長線于點(diǎn)F,過點(diǎn)E作EM⊥AF交BC于點(diǎn)M,連接AM,請(qǐng)思考并判斷AE與EF、∠1與∠2具有怎樣的數(shù)量關(guān)系?并推理說明你的判斷
探究與應(yīng)用
如圖②,在梯形ABCD中,點(diǎn)E為CD的中點(diǎn),連接AE,過點(diǎn)E作EM⊥AE交BC于點(diǎn)M,連接AM.若∠EMC=70°,則∠DAE=
20
20
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南關(guān)區(qū)模擬)如圖,在梯形ABCD中,AB∥CD,AD⊥AB,AD=8cm,DC=8cm,AB=12cm.點(diǎn)P從點(diǎn)A出發(fā),沿線段AD勻速運(yùn)動(dòng),與此同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿線段BA勻速運(yùn)動(dòng),P、Q兩點(diǎn)運(yùn)動(dòng)的速度均為1cm/s,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng),過點(diǎn)Q作QM⊥AB交折線BC-CD于點(diǎn)M.以線段MQ為直角邊在MQ的左側(cè)作等腰直角△MQN,以線段AP為一邊在AP的右側(cè)作正方形APEF,設(shè)運(yùn)動(dòng)時(shí)間為t(s),△MQN與正方形APEF重疊部分的面積為S(cm).

(1)求兩點(diǎn)N、F相遇時(shí)t的值;
(2)求S與t的函數(shù)關(guān)系式;
(3)當(dāng)點(diǎn)M在線段CD上運(yùn)動(dòng)時(shí),設(shè)MN分別交PE、PA于點(diǎn)G、H,請(qǐng)直接寫出在此時(shí)段△PGH掃過平面部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案