二次函數(shù)y=﹣2(x﹣5)2+3的頂點坐標(biāo)是   
(5,3)

試題分析:直接根據(jù)頂點式寫出頂點坐標(biāo)(5,3)!
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點,與y軸交于C點,拋物線經(jīng)過A,B,C三點,頂點為F.

(1)求A,B,C三點的坐標(biāo);
(2)求拋物線的解析式及頂點F的坐標(biāo);
(3)已知M為拋物線上一動點(不與C點重合),試探究:
①使得以A,B,M為頂點的三角形面積與△ABC的面積相等,求所有符合條件的點M的坐標(biāo);
②若探究①中的M點位于第四象限,連接M點與拋物線頂點F,試判斷直線MF與⊙E的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點,拋物線y=x2+bx+c經(jīng)過A、B兩點,點C是拋物線與x軸的另一個交點(與A點不重合).

(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對稱軸上,是否存在點M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

直線與x、y軸分別交于點A、C.拋物線的圖象經(jīng)過A、C和點B(1,0).

(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動點D,當(dāng)D與直線AC的距離DE最大時,求出點D的坐標(biāo),并求出最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).

(1)求點B,C的坐標(biāo);
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點A和點B,與y軸交于點C,已知點B的坐標(biāo)為(3,0).

(1)求a的值和拋物線的頂點坐標(biāo);
(2)分別連接AC、BC.在x軸下方的拋物線上求一點M,使△AMC與△ABC的面積相等;
(3)設(shè)N是拋物線對稱軸上的一個動點,d=|AN﹣CN|.探究:是否存在一點N,使d的值最大?若存在,請直接寫出點N的坐標(biāo)和d的最大值;若不存在,請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點A,B,與軸交于點C。過點C作CD∥x軸,交拋物線的對稱軸于點D,連結(jié)BD。已知點A坐標(biāo)為(-1,0)。

(1)求該拋物線的解析式;
(2)求梯形COBD的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+3與y軸交于點A,過點A與x軸平行的直線交拋物線于點B、C,則BC的長值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論正確的是
A.a(chǎn)<0
B.b2﹣4ac<0
C.當(dāng)﹣1<x<3時,y>0
D.

查看答案和解析>>

同步練習(xí)冊答案