【題目】君暢中學(xué)計(jì)劃購買一些文具送給學(xué)生,為此學(xué)校決定圍繞“在筆袋、圓規(guī)、直尺、鋼筆四種文具中,你最需要的文具是什么?(必選且只選一種)”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請你根據(jù)以上信息回答下列問題:

(1)在這次調(diào)查中,最需要圓規(guī)的學(xué)生有多少名?并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)如果全校有970名學(xué)生,請你估計(jì)全校學(xué)生中最需要鋼筆的學(xué)生有多少名?

【答案】
(1)解:根據(jù)題意得:18÷30%=60(名),
60﹣(21+18+6)=15(名),
則本次調(diào)查中,最需要圓規(guī)的學(xué)生有15名,
補(bǔ)全條形統(tǒng)計(jì)圖,如圖所示:

(2)解:根據(jù)題意得:970× =97(名),
則估計(jì)全校學(xué)生中最需要鋼筆的學(xué)生有97名
【解析】(1)樣本=直尺的頻數(shù)直尺的百分?jǐn)?shù),各頻數(shù)之和=樣本;(2)總體抽取的最需要鋼筆的學(xué)生的百分?jǐn)?shù)即可求解。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)是(8,4),連接AC,BC.

(1)求過O,A,C三點(diǎn)的拋物線的解析式,并判斷△ABC的形狀;

(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿OB以每秒2個(gè)單位長度的速度向點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒1個(gè)單位長度的速度向點(diǎn)C運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),PA=QA?

(3)在拋物線的對稱軸上,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在Rt△ABC中,∠C=90°,∠B=60°.
(1)尺規(guī)作圖:作線段AB的垂直平分線m(保留作圖痕跡,不寫作法);
(2)在已作的圖形中,若直線m分別交AB、AC及BC的延長線于點(diǎn)D、E、F.連結(jié)AF,若AF=2,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,P(﹣13)關(guān)于原點(diǎn)的對稱點(diǎn)Q的坐標(biāo)是( 。

A.13B.(﹣1,3C.1,﹣3D.(﹣1,﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在對某社會(huì)機(jī)構(gòu)的調(diào)查中收集到以下數(shù)據(jù),你認(rèn)為最能夠反映該機(jī)構(gòu)年齡特征的統(tǒng)計(jì)量是(  )

年齡

13

14

15

25

28

30

35

其他

人數(shù)

30

533

17

12

20

9

2

3

A. 平均數(shù) B. 眾數(shù) C. 方差 D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(2m,m),翻折矩形OABC,使點(diǎn)A與點(diǎn)C重合,得到折痕DE,設(shè)點(diǎn)B的對應(yīng)點(diǎn)為F,折痕DE所在直線與y軸相交于點(diǎn)G,經(jīng)過點(diǎn)C,F(xiàn),D的拋物線為

(1)求點(diǎn)D的坐標(biāo)(用含m的式子表示);

(2)若點(diǎn)G的坐標(biāo)為(0,﹣3),求該拋物線的解析式;

(3)在(2)的條件下,設(shè)線段CD的中點(diǎn)為M,在線段CD上方的拋物線上是否存在點(diǎn)P,使PM=EA?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)我們利用2種不同的方法計(jì)算同一圖形的面積時(shí),可以得到一個(gè)等式.例如,由圖1,可得等式:(a+2b)(a+b)=a2+3ab+2b2
(1)由圖2,可得等式:
(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知 a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)利用圖3中的紙片(足夠多),畫出一種拼圖,使該拼圖可用來驗(yàn)證等式:2a2+5ab+2b2=(2a+b)(a+2b);
(4)小明用2 張邊長為a 的正方形,3 張邊長為b的正方形,5 張邊長分別為a、b 的長方形紙片重新拼出一個(gè)長方形,那么該長方形較長的一條邊長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用).
A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面.

現(xiàn)有19張硬紙板,裁剪時(shí)x張用A方法,其余用B方法.
(1)用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個(gè)盒子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列不等式變形正確的是( 。

A.ab,得acbcB.ab,得﹣2a>﹣2b

C.ab,得﹣a>﹣bD.ab,得a2b2

查看答案和解析>>

同步練習(xí)冊答案